5,429 research outputs found

    Analysing how constraints impact architectural decision-making

    Get PDF
    Architectural design projects are characterised by a high number of constraints. Along with planning, energy performance and fire safety regulations, current designers have to face constraining factors related to budget, acoustics, orientation, wind turbulence, accessibility for the disabled, and so forth. These constraints steer the design process implicitly and explicitly in certain directions as soon as architectural designers aim at satisfying design briefs. We aim in this article at analysing the impact of such constraints on the design process. At this end, we have studied four design sessions in a particular (student) design use case. In analysing these four sessions, we used linkography as a method, because this appeared to be one of the better options to obtain a more quantitative assessment of the design process. The linkography method was combined with an interview of the student design team, in order to check the correctness of our conclusions

    Conversation and critique within the architectural design process: a linkograph analysis

    Get PDF
    Conversation and critique are central to architectural design practice as they function as tools for probing and further improving design ideas. We study the kind of design activities that take place in such conversation and critique within the architectural design process. We use linkographs to characterise the design process taking place during conversation. More precisely, we study conversations between design teachers and design students. In this article, an example design process is considered that takes place via a traditional face-to-face meeting. Using the resulting linkograph, we are able to assess the kind of design activity taking place during such sessions of conversation and critique

    Supporting development and management of smart office applications: a DYAMAND case study

    Get PDF
    To realize the Internet of Things (IoT) vision, tools are needed to ease the development and deployment of practical applications. Several standard bodies, companies, and ad-hoc consortia are proposing their own solution for inter-device communication. In this context, DYnamic, Adaptive MAnagement of Networks and Devices (DYAMAND) was presented in a previous publication to solve the interoperability issues introduced by the multitude of available technologies. In this paper a DYAMAND case study is presented: in cooperation with a large company, a monitoring application was developed for flexible office spaces in order to reliably reorganize an office environment and give real-time feedback on the usage of meeting rooms. Three wireless sensor technologies were investigated to be used in the pilot. The solution was deployed in a "friendly user" setting at a research institute (iMinds) prior to deployment at the large company's premises. Based on the findings of both installations, requirements for an application platform supporting development and management of smart (office) applications were listed. DYAMAND was used as the basis of the implementation. Although the local management of networked devices as provided by DYAMAND enables easier development of intelligent applications, a number of remote services discussed in this paper are needed to enable reliable and up-to-date support (of new technologies)

    Distributed multi-agent algorithm for residential energy management in smart grids

    Get PDF
    Distributed renewable power generators, such as solar cells and wind turbines are difficult to predict, making the demand-supply problem more complex than in the traditional energy production scenario. They also introduce bidirectional energy flows in the low-voltage power grid, possibly causing voltage violations and grid instabilities. In this article we describe a distributed algorithm for residential energy management in smart power grids. This algorithm consists of a market-oriented multi-agent system using virtual energy prices, levels of renewable energy in the real-time production mix, and historical price information, to achieve a shifting of loads to periods with a high production of renewable energy. Evaluations in our smart grid simulator for three scenarios show that the designed algorithm is capable of improving the self consumption of renewable energy in a residential area and reducing the average and peak loads for externally supplied power

    Design and evaluation of an architecture for future smart grid service provisioning

    Get PDF
    In recent years, there has been a growing interest in cloud technologies. Using current cloud solutions, it is however difficult to create customizable multi-tenant applications, especially if the application must support varying Quality of Service (QoS) guarantees. Software Product Line Engineering (SPLE) and feature modeling techniques are commonly used to address these issues in non-cloud applications, but these techniques cannot be ported directly to a cloud context, as the common approaches are geared towards customization of on-premise deployed applications, and do not support multi-tenancy. In this paper, we propose an architecture for the development and management of customizable Software as a Service (SaaS) applications, built using SPLE techniques. In our approach, each application is a composition of services, where individual services correspond to specific application functionalities, referred to as features. A feature-based methodology is described to abstract and convert the application information required at different stages of the application life-cycle: development, customization and deployment. We specifically focus on how development feature models can be adapted ensuring a one-to-one correspondence between features and services exists, ensuring the composition of services yields an application containing the corresponding features. These runtime features can then be managed using feature placement techniques. The proposed approach enables developers to define significantly less features, while limiting the amount of automatically generated features in the application runtime stage. Conversion times between models are shown to be in the order of milliseconds, while execution times of management algorithms are shown to improve by 5 to 17% depending on the application case

    An MCMC study of general squark flavour mixing in the MSSM

    Full text link
    We present an extensive study of non-minimally flavour violating (NMFV) terms in the Lagrangian of the Minimal Supersymmetric Standard Model (MSSM). We impose a variety of theoretical and experimental constraints and perform a detailed scan of the parameter space by means of a Markov Chain Monte-Carlo (MCMC) setup. This represents the first study of several non-zero flavour-violating elements within the MSSM. We present the results of the MCMC scan with a special focus on the flavour-violating parameters. Based on these results, we define benchmark scenarios for future studies of NMFV effects at the LHC.Comment: 8 pages, 3 figures. To appear in the proceedings of the European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 201

    Shape recognition for ships: World War I naval camouflage under the magnifying glass

    Get PDF
    Much of the experiments that led to the development of World War I ship camouflage were conducted on an intuitive basis or based upon pseudo-scientific work. As a result of this rather empirical approach, possible effects of the naval camouflage schemes that were developed against the background of submarine warfare on the Atlantic still remain unclear. So-called dazzle paint schemes were conceived to break up target contours and disclose the ship’s number, direction, speed and distance—thus complicating targeting through primitive stereoscopic range finders and periscopes used at the time. Digital image analysis provides helpful tools to assess the effects of dazzle painting techniques. By applying dazzle map textures to digital three dimensional models, different paint schemes can be examined and evaluated under variable atmospheric conditions. Shape recognition algorithms are implemented in an attempt to draw some conclusions about different dazzle designs. This paper provides a brief overview of the origins and methodology of dazzle camouflage. It proposes an experimental framework for ship classification purpose, thus exploring the possibilities of quantitative analysis of rendered computer images to evaluate possible effects of dazzle painting. The test results indicate some possible effects of the World War I paint schemes
    • …
    corecore