13,654 research outputs found

    Change point estimation for the telegraph process observed at discrete times

    Full text link
    The telegraph process models a random motion with finite velocity and it is usually proposed as an alternative to diffusion models. The process describes the position of a particle moving on the real line, alternatively with constant velocity +v+ v or −v-v. The changes of direction are governed by an homogeneous Poisson process with rate λ>0.\lambda >0. In this paper, we consider a change point estimation problem for the rate of the underlying Poisson process by means of least squares method. The consistency and the rate of convergence for the change point estimator are obtained and its asymptotic distribution is derived. Applications to real data are also presented

    Empirical L2L^2-distance test statistics for ergodic diffusions

    Get PDF
    The aim of this paper is to introduce a new type of test statistic for simple null hypothesis on one-dimensional ergodic diffusion processes sampled at discrete times. We deal with a quasi-likelihood approach for stochastic differential equations (i.e. local gaussian approximation of the transition functions) and define a test statistic by means of the empirical L2L^2-distance between quasi-likelihoods. We prove that the introduced test statistic is asymptotically distribution free; namely it weakly converges to a χ2\chi^2 random variable. Furthermore, we study the power under local alternatives of the parametric test. We show by the Monte Carlo analysis that, in the small sample case, the introduced test seems to perform better than other tests proposed in literature

    Shedding Light on Diatom Photonics by means of Digital Holography

    Get PDF
    Diatoms are among the dominant phytoplankters in the worl's ocean, and their external silica investments, resembling artificial photonics crystal, are expected to play an active role in light manipulation. Digital holography allowed studying the interaction with light of Coscinodiscus wailesii cell wall reconstructing the light confinement inside the cell cytoplasm, condition that is hardly accessible via standard microscopy. The full characterization of the propagated beam, in terms of quantitative phase and intensity, removed a long-standing ambiguity about the origin of the light. The data were discussed in the light of living cell behavior in response to their environment

    Van der Waals Coefficients of Atoms and Molecules from a Simple Approximation for the Polarizability

    Full text link
    A simple and computationally efficient scheme to calculate approximate imaginary-frequency dependent polarizability, hence asymptotic van der Waals coefficient, within density functional theory is proposed. The dynamical dipolar polarizabilities of atoms and molecules are calculated starting from the Thomas-Fermi-von Weizs\"acker (TFvW) approximation for the independent-electron kinetic energy functional. The van der Waals coefficients for a number of closed-shell ions and a few molecules are hence calculated and compared with available values obtained by fully first-principles calculations. The success in these test cases shows the potential of the proposed TFvW approximate response function in capturing the essence of long range correlations and may give useful information for constructing a functional which naturally includes van der Waals interactions.Comment: 6 pages, 4 figures. To appear in Phys. Rev.

    An Observational Cohort Study on Delayed-Onset Infections after Mandibular Third-Molar Extractions.

    Get PDF
    OBJECTIVES: The purpose of the present study was to investigate the occurrence and clinical features of delayed-onset infections after mandibular third-molar extractions. METHOD AND MATERIALS: An observational cohort study was conducted on 179 patients undergoing mandibular third-molar extraction between January 2013 and December 2015, for a total of 217 extractions. Data were recorded at the time of extraction (T0), on suture removal seven days later (T1), and 30 days after the extraction, when patients were contacted and asked about their healing process (T2). The statistical analysis was performed with nonparametric tests. A p value lower than 0.05 was considered statistically significant. RESULTS: Eight delayed-onset infections were recorded, amounting to 3.7% of all extractions. The median time elapsing from the extraction to the delayed-onset infection was 35 days (IQR 28-40; min 24-max 49). Younger age and longer surgical procedures seemed to be more often associated with this complication. CONCLUSION: Delayed-onset infections after third-molar extractions are relatively rare postoperative complications characterized by a swelling, usually with a purulent discharge. Patients should be informed of this possibility, which might develop even several weeks after the extraction

    TE Wave Measurement and Modeling

    Full text link
    In the TE wave method, microwaves are coupled into the beam-pipe and the effect of the electron cloud on these microwaves is measured. An electron cloud (EC) density can then be calculated from this measurement. There are two analysis methods currently in use. The first treats the microwaves as being transmitted from one point to another in the accelerator. The second more recent method, treats the beam-pipe as a resonant cavity. This paper will summarize the reasons for adopting the resonant TE wave analysis as well as give examples from CESRTA and DA{\Phi}NE of resonant beam-pipe. The results of bead-pull bench measurements will show some possible standing wave patterns, including a cutoff mode (evanescent) where the field decreases exponentially with distance from the drive point. We will outline other recent developments in the TE wave method including VORPAL simulations of microwave resonances, as well as the simulation of transmission in the presence of both an electron cloud and magnetic fields.Comment: Presented at ECLOUD'12: Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d'Elba, Italy, 5-9 June 2012; CERN-2013-002, pp. 193-20

    Building irregularity issues and architectural design in seismic areas

    Get PDF

    Self-organisation to criticality in a system without conservation law

    Full text link
    We numerically investigate the approach to the stationary state in the nonconservative Olami-Feder-Christensen (OFC) model for earthquakes. Starting from initially random configurations, we monitor the average earthquake size in different portions of the system as a function of time (the time is defined as the input energy per site in the system). We find that the process of self-organisation develops from the boundaries of the system and it is controlled by a dynamical critical exponent z~1.3 that appears to be universal over a range of dissipation levels of the local dynamics. We show moreover that the transient time of the system ttrt_{tr} scales with system size L as ttr∼Lzt_{tr} \sim L^z. We argue that the (non-trivial) scaling of the transient time in the OFC model is associated to the establishment of long-range spatial correlations in the steady state.Comment: 10 pages, 6 figures; accepted for publication in Journal of Physics

    Wave and Particle Limit for Multiple Barrier Tunneling

    Full text link
    The particle approach to one-dimensional potential scattering is applied to non relativistic tunnelling between two, three and four identical barriers. We demonstrate as expected that the infinite sum of particle contributions yield the plane wave results. In particular, the existence of resonance/transparency for twin tunnelling in the wave limit is immediately obvious. The known resonances for three and four barriers are also derived. The transition from the wave limit to the particle limit is exhibit numerically.Comment: 15 pages, 3 figure
    • …
    corecore