14,185 research outputs found
Maintaining the Old Rite in Modern Russia: Feodor Permiakov's 'Vypiski' of 1910 in a Historical Context
Presented at the Sixth International Hilandar Conference: Medieval Slavic Text and Image in the Cultures of Orthodoxy, July 19-21, 201
Electroweak lights from Dark Matter annihilations
The energy spectra of Standard Model particles originated from Dark Matter
annihilations can be significantly altered by the inclusion of electroweak
gauge boson radiation from the final state. A situation where this effect is
particularly important is when a Majorana Dark Matter particle annihilates into
two light fermions. This process is in p-wave and hence suppressed by the small
value of the relative velocity of the annihilating particles. The inclusion of
electroweak radiation eludes this suppression and opens up a potentially
sizeable s-wave contribution to the annihilation cross section. I will discuss
the impact of this effect on the fluxes of stable particles resulting from the
Dark Matter annihilations, which are relevant for Dark Matter indirect
searches.Comment: 4 pages, 2 figures. Contribution to the conference proceedings of
TAUP 2011, Munich - Germany (5-9 September 2011
Guiding new physics searches with unsupervised learning
We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background, and an observed dataset containing a potential hidden signal of New Physics. We build a statistical test upon a test statistic which measures deviations between two samples, using a Nearest Neighbors approach to estimate the local ratio of the density of points. The test is model-independent and non-parametric, requiring no knowledge of the shape of the underlying distributions, and it does not bin the data, thus retaining full information from the multidimensional feature space. As a proof-of-concept, we apply our method to synthetic Gaussian data, and to a simulated dark matter signal at the Large Hadron Collider. Even in the case where the background can not be simulated accurately enough to claim discovery, the technique is a powerful tool to identify regions of interest for further study
Spontaneous baryogenesis without baryon isocurvature
We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation. \ua9 2017 IOP Publishing Ltd and Sissa Medialab srl
Theory of continuum percolation II. Mean field theory
I use a previously introduced mapping between the continuum percolation model
and the Potts fluid to derive a mean field theory of continuum percolation
systems. This is done by introducing a new variational principle, the basis of
which has to be taken, for now, as heuristic. The critical exponents obtained
are , and , which are identical with the mean
field exponents of lattice percolation. The critical density in this
approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [-
v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles
separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late
Quantum theory of intersubband polarons
We present a microscopic quantum theory of intersubband polarons,
quasiparticles originated from the coupling between intersubband transitions
and longitudinal optical phonons. To this aim we develop a second quantized
theory taking into account both the Fr\"ohlich interaction between phonons and
intersubband transitions and the Coulomb interaction between the intersubband
transitions themselves. Our results show that the coupling between the phonons
and the intersubband transitions is extremely intense, thanks both to the
collective nature of the intersubband excitations and to the natural tight
confinement of optical phonons. Not only the coupling is strong enough to
spectroscopically resolve the resonant splitting between the modes (strong
coupling regime), but it can become comparable to the bare frequency of the
excitations (ultrastrong coupling regime). We thus predict the possibility to
exploit intersubband polarons both for applied optoelectronic research, where a
precise control of the phonon resonances is needed, and also to observe
fundamental quantum vacuum physics, typical of the ultrastrong coupling regime
Simplified models vs. effective field theory approaches in dark matter searches
In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner. \ua9 2016, The Author(s)
- …