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Abstract We propose a new scientific application of unsu-
pervised learning techniques to boost our ability to search for
new phenomena in data, by detecting discrepancies between
two datasets. These could be, for example, a simulated
standard-model background, and an observed dataset con-
taining a potential hidden signal of New Physics. We build a
statistical test upon a test statistic which measures deviations
between two samples, using a Nearest Neighbors approach
to estimate the local ratio of the density of points. The test is
model-independent and non-parametric, requiring no knowl-
edge of the shape of the underlying distributions, and it does
not bin the data, thus retaining full information from the mul-
tidimensional feature space. As a proof-of-concept, we apply
our method to synthetic Gaussian data, and to a simulated
dark matter signal at the Large Hadron Collider. Even in the
case where the background can not be simulated accurately
enough to claim discovery, the technique is a powerful tool
to identify regions of interest for further study.
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1 Introduction

The problem of comparing two independent data samples
and looking for deviations is ubiquitous in statistical analy-
ses. It is of particular interest in physics, when addressing the
problem of searching for new phenomena in data, to compare
observations with expectations to find discrepancies. In gen-
eral, one would like to assess (in a statistically sound way)
whether the observed experimental data are compatible with
the expectations, or there are signals of the presence of new
phenomena.

In high-energy physics, although the Standard Model
(SM) of particle physics has proved to be extremely suc-
cessful in predicting a huge variety of elementary particle
processes with spectacular accuracy, it is widely accepted
that it needs to be extended to account for unexplained phe-
nomena, such as the dark matter of the Universe, the neu-
trino masses, and more. The search for New Physics (NP)
beyond the SM is the primary goal of the Large Hadron
Collider (LHC). The majority of NP searches at the LHC
are performed to discover or constrain specific models, i.e.
specific particle physics extensions of the SM. Relatively
less effort has been devoted to design and carry out strate-
gies for model-independent searches for NP [1–9]. At the
current stage of no evidence for NP in the LHC data,
it is of paramount importance to increase the chances of
observing the presence of NP in the data. It may even be
already there, but it may have been missed by model-specific
searches.

Recently, there has been growing interest in applying
machine learning (ML) techniques to high-energy physics
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problems, especially using supervised learning (see e.g. Refs.
[10–27] and in particular the recent work of Ref. [8] with
which we share some ideas, although with a very different
implementation). On the other hand, applications of unsuper-
vised learning have been relatively unexplored [10,28,29].
In unsupervised learning the data are not labeled, so the pres-
ence and the characteristics of new phenomena in the data are
not known a priori. One disadvantage of unsupervised learn-
ing is that one cannot easily associate a performance metric
to the algorithm. Nevertheless, unsupervised methods such
as anomaly (or outlier) detection techniques, or clustering
algorithms, provide powerful tools to inspect the global and
local structures of high-dimensional datasets and discover
‘never-seen-before’ processes.

In this paper, we propose a new scientific application
of unsupervised learning techniques to boost our ability to
search for new phenomena in data, by measuring the degree
of compatibility between two data samples (e.g. observa-
tions and predictions). In particular, we build a statistical
test upon a test statistic which measures deviations between
two datasets, relying on a Nearest-Neighbors technique to
estimate the ratio of the local densities of points in the
samples.

Generally speaking, there are three main difficulties one
may face when trying to carry out a search for the presence of
new processes in data: (1) a model for the physics describing
the new process needs to be assumed, which limits the gen-
erality of the method; (2) it is impossible or computationally
very expensive to evaluate directly the likelihood function,
e.g. due to the complexity of the experimental apparatus; (3)
a subset of relevant features needed to be extracted from the
data, otherwise the histogram methods may fail due to the
sparsity of points in high-dimensional bins.

A typical search for NP at LHC suffers from all such
limitations: a model of NP (which will produce a signal,
in the high-energy physics language) is assumed, the like-
lihood evaluation is highly impractical, and a few physi-
cally motivated variables (observables or functions of observ-
ables) are selected to maximize the presence of the signal
with respect to the scenario without NP (the so-called back-
ground).

Our approach overcomes all of these problems at once, by
having the following properties:

1. it is model-independent: it aims at assessing whether or
not the observed data contain traces of new phenomena
(e.g. due to NP), regardless of the specific physical model
which may have generated them;

2. it is non-parametric: it does not make any assumptions
about the probability distributions from which the data
are drawn, so it is likelihood-free;

3. it is un-binned: it partitions the feature space of data
without using fixed rectangular bins; so it allows one

to retain and exploit the information from the full high-
dimensional feature space, when single or few variables
cannot.

The method we propose in this paper is particularly useful
when dealing with situations where the distribution of data
in feature space is almost indistinguishable from the distri-
bution of the reference (background) model.

Although our main focus will be on high-energy particle
physics searches at the LHC, our method can be successfully
applied in many other situations where one needs to detect
incompatibilities between data samples.

The remainder of the paper is organized as follows. In
Sect. 2 we describe the details of the construction of our
method and its properties. In Sect. 3 we apply it to case stud-
ies with simulated data, both for synthetic Gaussian samples
and for a more physics-motivated example related to LHC
searches. We outline some directions for further improve-
ments and extensions of our approach, in Sect. 4. Finally, we
conclude in Sect. 5.

2 Statistical test of dataset compatibility

In general terms, we approach the problem of measuring the
compatibility between datasets sampled from unknown prob-
ability densities, by first estimating the probability densities
and then applying a notion of functional distance between
them. The first task is worked out by performing density
ratio estimation using Nearest Neighbors, while the distance
between probability densities is chosen to be the Kullback–
Leibler divergence [30]. We now describe our statistical test
in more detail.

2.1 Definition of the problem

Let us start by defining the problem more formally. Let
{xi |xi ∈ R

D}NT
i=1 and {x′

i |x′
i ∈ R

D}NB
i=1 be two independent

and identically distributed D-dimensional samples drawn
independently from the probability density functions (PDFs)
pT and pB , respectively:

T ≡ {xi }NT
i=1

iid∼ pT , (2.1)

B ≡ {x′
i }NB
i=1

iid∼ pB . (2.2)

We will refer to B as a ‘benchmark’ (or ‘control’ or ‘ref-
erence’) sample and to T as a ‘trial’ (or ‘test’) sample. The
T ,B samples consist of NT , NB points, respectively. TheRD

space where the sample points xi , x′
i live will be referred to

as ‘feature’ space.
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The primary goal is to check whether the two samples are
drawn from the same PDF, i.e. whether pB = pT . In other
words, we aim at assessing whether (and to what significance
level) the two samples are compatible with each other. More
formally, we want to perform a statistical test of the null
hypothesis {H0 : pT = pB} versus the alternative hypothesis
{H1 : pT �= pB}.

This problem is well-known in the statistics literature as
a two-sample (or homogeneity) test, and many ways to han-
dle it have been proposed. We want to construct a statistical
hypothesis test of dataset compatibility satisfying the prop-
erties 1–3 outlined in the introduction.

First, the B, T samples are going to be analyzed without
any particular assumptions about the underlying model that
generated them (property 1); our hypothesis test does not try
to infer or estimate the parameters of the parent distributions,
but it simply outputs to what degree the two samples can be
considered compatible.

Second, if one is only interested in a location test, such as
determining whether the two samples have the same mean
or variance, then a t test is often adopted. However, we
assume no knowledge about the original PDFs, and we want
to check the equality or difference of the two PDFs as a whole;
therefore, we will follow a non-parametric (distribution-free)
approach (property 2).

Third, we want to retain the full multi-dimensional infor-
mation of the data samples, but high-dimensional histograms
may result in sparse bins of poor statistical use. The pop-
ular Kolmogorov–Smirnov method only works for one-
dimensional data, and extensions to multi-dimensional data
are usually based on binning (for an alternative method that
instead reduces the dimensionality of the data to one, see
Ref. [16]).

Alternative non-parametric tests like the Cramér–von
Mises–Anderson test or the Mann–Whitney test require the
possibility of ranking the data points in an ordinal way, which
may be ill-defined or ambiguous in high-dimensions. Thus,
we will employ a different partition of feature space not based
on fixed rectangular bins (property 3), which allows us to
perform a non-parametric two-sample test in high dimen-
sions.

So, in order to construct our hypothesis test satisfying
properties 1–3, we need to build a new test statistic and con-
struct its distribution, as described in the next sections.

2.2 Test statistic

Since we are interested in measuring the deviation between
the two samples, it is convenient to define the ratio of prob-
ability densities to observe the points in the two samples, in
the case pB �= pT (numerator) relative to the case pB = pT
(denominator)

λ ≡
∏

x′
j∈B pB(x′

j )
∏

x j∈T pT (x j )
∏

x′
j∈B pB(x′

j )
∏

x j∈T pB(x j )
=

∏

x j∈T

pT (x j )

pB(x j )
.

(2.3)

The above quantity may also be thought of as a likelihood
ratio. However, as we are carrying out a non-parametric test,
we prefer not to use this term to avoid confusion.

Now, since the true PDFs pB,T are not known, we follow
the approach of finding estimators p̂B,T for the PDFs and
evaluate the ratio λ on them

λ̂ =
∏

x j∈T

p̂T (x j )

p̂B(x j )
. (2.4)

We then define our test statistic TS over the trial sample as

TS(B, T ) ≡ log λ̂1/|T | = 1

NT

NT∑

j=1

log
p̂T (x j )

p̂B(x j )
, (2.5)

where |T | = NT is the size of the trial sample. This test
statistic will take values close to zero when H0 is true, and
far from zero (positively or negatively) when H0 is false.

The test statistic defined in Eq. (2.5) is also equal to the
estimated Kullback–Leibler (KL) divergence D̂KL( p̂T || p̂B)

between the estimated PDFs of trial and benchmark samples,
with the expectation value replaced by the empirical average
[see Appendix A and in particular Eq. (5.2)]. The KL diver-
gence plays a central role in information theory and can be
interpreted as the relative entropy of a probability distribu-
tion with respect to another one. Our choice is also moti-
vated by the fact that the log function in Eq. (2.5) makes the
test statistic linearly sensitive to small differences between
the distributions. Of course, other choices for the test statis-
tic are possible, based on an estimated divergence between
distributions other than the KL divergence, e.g. the Pearson
squared-error divergence. The exploration of other possibil-
ities is beyond the scope of this paper and is left for future
work.

Ultimately, we want to conclude whether or not the null
hypothesis can be rejected, with a specified significance level
α (e.g. α = 0.05), therefore we need to associate a p value to
the null hypothesis, to be compared with α. To this end, we
first need to estimate the PDFs p̂B,T from the samples, then
compute the test statistics TSobs observed on the two given
samples. Next, in order to evaluate the probability associated
with the observed value TSobs of the test statistic, we need to
reconstruct its probability distribution f (TS|H0) under the
null hypothesis H0, and finally compute a two-sided p value
of the null hypothesis.

The distribution of the test statistic is expected to be sym-
metric around its mean (or median), which in general may
not be exactly zero as a finite-sample effect. Therefore, the
two-sided p value is simply double the one-sided p value.
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Fig. 1 Schematic view of the
proposed method to compute the
p value of the null hypothesis
that the two samples are drawn
from the same probability
density K-NN density

ratio estim
ation

Test Statistic

permutation test

p value

TS distribution  

-|TSobs|

TSobs
Benchmark sample

Trial sample

|TSobs|

A schematic summary of the method proposed in this
paper is shown in Fig. 1.

In the remainder of this section we will describe this pro-
cedure in detail.

2.3 Probability density ratio estimator

We now turn to describing our approach to estimating the
ratio of probability densities p̂B/ p̂T needed for the test statis-
tic. There exist many possible ways to obtain density ratio
estimators, e.g. using kernels [31] (see Ref. [32] for a com-
prehensive review). We choose to adopt a nearest-neighbors
(NN) approach [33–39].

Let us fix an integer K > 0. For each point x j ∈ T , one
computes the Euclidean distance1 r j,T to the K th nearest
neighbor of x j in T \{x j }, and the Euclidean distance r j,B
to the K th nearest neighbor of x j in B. Since the probability
density is proportional to the density of points, the probability
estimates are simply given by the number of points (K , by
construction) within a sphere of radius r j,B or r j,T , divided
by the volume of the sphere and the total number of available
points. Therefore, the local nearest-neighbor estimates of the
PDFs read

p̂B(x j ) = K

NB

1

ωDr Dj,B
, (2.6)

p̂T (x j ) = K

NT − 1

1

ωDr Dj,T
, (2.7)

(for any x j ∈ T ) where ωD = πD/2/�(D/2 + 1) is the
volume of the unit sphere in R

D . So, the test statistic defined
in Eq. (2.5) is simply given by

1 Other distance metrics may be used, e.g. a L p-norm. We do not
explore other possibilities here.

TS(B, T ) = D

NT

NT∑

j=1

log
r j,B
r j,T

+ log
NB

NT − 1
. (2.8)

The value of the test statistic on the benchmark and trial
samples will also be referred to as the ‘observed’ test statis-
tic TSobs. The NN density ratio estimator described above
has been proved to be consistent and asymptotically unbi-
ased [35,36,38], i.e. the test statistic TS (2.8) built from the
estimated probability densities converges almost surely to
the KL divergence between the true probability densities in
the large sample limit NB, NT → ∞.

Two advantages of the NN density ratio estimator are that
it easily handles high-dimensional data, and its calculation
is relatively fast, especially if k–d trees are employed to find
the nearest neighbors. As a disadvantage, for finite sample
sizes, the estimator (2.8) retains a small bias, although sev-
eral methods has been proposed to reduce it (see e.g. Refs.
[35,40]). Such a residual bias is only related to the asymptotic
convergence properties of the test statistic to the estimated
KL divergence D̂KL( p̂T || p̂B), and does not affect the out-
come and the power of our test in any way.

The use of NN is also convenient as it allows the partition
of the feature space not into rectangular bins, but into hyper-
spheres of varying radii, making sure they are all populated
by data points.

The test statistic TS in Eq. (2.8), being an estimator of
the KL divergence between the two underlying (unknown)
PDFs, provides a measure of dataset compatibility. In the
construction of TS we have chosen a particular K as the
number of nearest neighbors. Of course, there is not an a
priori optimal value of K to choose. In the following analyses
we will use a particular choice of K , and we will comment
on the possibility of extending the algorithm with adaptive
K in Sect. 4.1.
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Now that we have a test statistic which correctly encodes
the degree of compatibility between two data samples, and
its asymptotic properties are ensured by theorems, we need
to associate a probability with the value of the TS calculated
on the given samples, as described in the next section.

2.4 Distribution of the test statistic and p value

In order to perform a hypothesis test, we need to know the dis-
tribution of the test statistic f (TS|H0) under the null hypoth-
esis H0, to be used to compute the p value. Classical statisti-
cal tests have well-known distributions of the test statistics,
e.g. normal, χ2 or Student t . In our case, the distribution of
TS is not theoretically known, for finite sample sizes. There-
fore, it needs to be estimated from the data samples them-
selves. We employ the resampling method known as the per-
mutation test [41,42] to construct the distribution f (TS|H0)

of the TS under the null hypothesis. It is a non-parametric
(distribution-free) method based on the idea of sampling dif-
ferent relabellings of the data, under the assumption they are
coming from the same parent PDF (null hypothesis).

In more detail, the permutation test is performed by first
constructing a pool sample by merging the two samples:
U = B∪T , then randomly shuffle (sampling without replace-
ment) the elements of U and assign the first NB elements to
B̃, and the remaining NT elements to T̃ . Next, one com-
putes the value of the test statistic on T̃ . If one repeats this
procedure for every possible permutation (relabelling) of the
sample points, one collects a large set of test statistic values
under the null hypothesis which provides an accurate estima-
tion of its distribution (exact permutation test). However, it
is often impractical to work out all possible permutations, so
one typically resorts to perform a smaller number Nperm of
permutations, which is known as an approximate (or Monte-
Carlo) permutation test. The TS distribution is then recon-
structed from the Nperm values of the test statistic obtained
by the procedure outlined above.

The distribution of the test statistic under a permutation
test is asymptotically normal with zero mean in the large sam-
ple limit NB, NT → ∞ [42], as a consequence of the Cen-
tral Limit Theorem. Furthermore, when the number Nperm

is large, the distribution of the p value estimator approxi-
mately follows a normal distribution with mean p and vari-
ance p(1 − p)/Nperm [41,43]. For example, if we want to
know the p value in the neighborhood of the significance
level α to better than α/3, we need Nperm > 9(1 − α)/α,
which is of the order of 1000 for α = 0.01.

Once the distribution of the test statistic is reconstructed,
it is possible to define the critical region for rejecting the
null hypothesis at a given significance α, defined by large
enough values of TSobs such that the corresponding p value
is smaller than α.

As anticipated in Sect. 2.2, for finite samples the test statis-
tic distribution is still approximately symmetric around the
mean, but the latter may deviate from zero. In order to account
for this general case, and give some intuitive meaning to the
size of the test statistic, it is convenient to standardize (or
‘studentize’) the TS to have zero mean and unit variance. Let
μ̂, σ̂ be the mean and the variance of test statistic under the
distribution f (TS|H0). We then transform the test statistic as

TS → TS′ ≡ TS − μ̂

σ̂
, (2.9)

which is distributed according to

f ′(TS′|H0) = σ̂ f (μ̂ + σ̂TS′|H0), (2.10)

with zero mean and unit variance. With this redefinition, the
two-sided p value can be easily computed as

p = 2
∫ +∞

|TS′
obs|

f ′(TS′|H0)dTS′. (2.11)

2.5 Summary of the algorithm

The pseudo-code of the algorithm for the statistical test pre-
sented in this paper is summarized in Table 1. We imple-
mented it in Python and an open-source package is available
on GitHub.2

2.6 Extending the test to include uncertainties

So far we have assumed that both B and T samples are
precisely known. However, in several situations of physi-
cal interest this may not be the case, as the features may
be known only with some uncertainty, e.g. when the sam-
ple points come from physical measurements. There can be
several factors affecting the precision with which each sam-
ple point is known, for instance systematic uncertainties (e.g.
the smearing effects of the detector response) and the lim-
ited accuracy of the background (Monte-Carlo simulation),
which may be particularly poor in some regions of the feature
space.

Of course, once such uncertainties are properly taken into
account, we expect a degradation of the results of the statisti-
cal test described in the previous sections, leading to weaker
conclusions about the rejection of the null hypothesis.

Here we describe a simple and straightforward extension
of the method described in this section, to account for uncer-
tainties in the positions of the sample points. We consider the
test statistic itself as a random variable, which is a sum of
the test statistic TS defined in Sect. 2.2, and computed on the
original B, T samples, and an uncertainty fluctuation (noise)
U , originating when each point of B (or T or both) is shifted

2 https://github.com/de-simone/NN2ST.
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Table 1 Pseudo-code for the
two-sample test algorithm, using
nearest neighbors density ratio
estimation

by a random vector: TSu = TS+U . The trial and benchmark
samples with uncertainties are then given by

Tu = {xi + 	xi }NT
i=1, (2.12)

Bu = {x′
i + 	x′

i }NB
i=1, (2.13)

which represent a point-wise random shift, where the error
samples 	xi ,	x′

i ∈ RD are independent random variables
drawn from the same distribution, according to the expected
(or presumed) distribution of uncertainties in the features,
e.g. zero-mean multivariate Gaussians.

Next, one can compute the test statistic on the ‘shifted’
samples as

TSu ≡ TS(Bu, Tu) = TS(B, T ) +U. (2.14)

Since the TS computed on the original B, T samples is given
by the observed value TSobs, the value of U for any random
samplings of the error samples is simply U = TS(Bu, Tu) −
TSobs. By repeating the calculation of U many (Niter) times,
each time adding a random noise to B (or T or both) we
can reconstruct its probability distribution f (U ), which is

asymptotically normal with zero mean in the large-sample
limit NB, NT → ∞.

The resulting distribution of the test statistic TSu , being
the sum of two i.i.d. random variables, is then given by the
convolution of the distribution f (TS|H0), computed via per-
mutation test on B, T , and the distribution f (U ) with mean
set to zero. This is motivated by the desire to eliminate the
bias in the mean of the distribution of U coming from finite-
sample effects. As a result of this procedure, the distribution
f (TSu |H0) will have the same mean as f (TS|H0) but a larger
variance.

The p value of the test is computed from TSobs with the
same steps as described in Sect. 2.4, but with the distribution
of the test statistic with uncertainties given by f (TSu |H0),
rather than f (TS|H0). Since f (TSu) has larger variance than
f (TS), the p value will turn out to be larger, therefore the
equivalent significance Z will be smaller. This conclusion
agrees with the expectation that the inclusion of uncertainties
leads to a degradation of the power of the test.

The summary of the algorithm to compute the distribu-
tion f (U ) can be found in Table 2. Once f (U ) is computed,
it needs to be convolved with f (TS|H0), which was previ-
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Table 2 Pseudo-code for the
algorithm to find the distribution
f (U ) of the test statistic noise
U

ously found via permutation test, as described in Sect. 2.4, to
provide the distribution of the test statistic with uncertainties
needed to compute the p value.

3 Applications to simulated data

3.1 Case study: Gaussian samples

As a first case study of our method let us suppose we know
the original distributions from which the benchmark and trial
samples are randomly drawn. For instance, let us consider the
multivariate Gaussian distributions of dimension D defined
by mean vectors µB,T and covariance matrices 
B,T :

pB = N (µB, 
B), pT = N (µT , 
T ). (3.1)

In this case, the KL divergence can be computed analytically
[see Eq. (5.4)]. In the large sample limit, we recover that the
test statistic converges to the true KL divergence between the
PDFs (see Fig. 2 and Appendix A). Of course, the comparison
is possible because we knew the parent PDFs pB, pT .

For our numerical experiments we fix the benchmark B
sample by the parameters µB = 1D , 
B = ID , and we con-
struct four different trial samples TG0, TG1, TG2, TG3 drawn
by Gaussian distributions whose parameters are defined in
Table 3. Each sample consists of 20,000 points randomly
drawn from the Gaussian distributions defined above. Notice
that the first trial sample TG0 is drawn from the same distri-
bution as the benchmark sample.

As is customary, we associate an equivalent Gaussian
significance Z to a given (two-sided) p value as: Z ≡
�−1(1 − p/2), where � is the cumulative distribution of a
standard (zero-mean, unit-variance) one-dimensional Gaus-

Fig. 2 Convergence of the test statistic to the exact KL divergence
(dashed horizontal line) between two 2-dimensional Gaussian distribu-
tions, in the large-sample limit. The B, T samples have the same size
NB = NT , and they are sampled from 2-dimensional Gaussian distri-
butions with µB = 1.02, µT = 1.22, 
B = 
T = I2. Two different
choices for the number of nearest neighbors are shown: K = 3 (blue
squares) and K = 20 (red crosses)

Table 3 Definition of the Gaussian datasets used for the numerical
experiments. Each sample consists of NB = NT = 20,000 points
randomly drawn from D-dimensional Gaussian distributions N (µ, 
)

Dataset µ 


B 1D ID
TG0 1D ID
TG1 1.12D ID

TG2 1D

⎛

⎝
0.95 0.1
0.1 0.8

0

0 ID−2

⎞

⎠

TG3 1.15D ID
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Table 4 Summary of the results
comparing B with 4 trial
samples, for different
dimensionality D. The samples
are defined in Table 3. We set
K = 5 and Nperm = 1000

Trial Dataset D = 2 D = 5 D = 10

p value Z p value Z p value Z

TG0 8.2 × 10−1 0.2 σ 6.9 × 10−1 0.4 σ 6.9 × 10−1 0.4 σ

TG1 2.8 × 10−2 2.2 σ 1.5 × 10−7 5.2 σ 3.6 × 10−13 7.3 σ

TG2 4.0 × 10−4 3.5 σ 8.8 × 10−8 5.3 σ 9.4 × 10−9 5.7 σ

TG3 1.2 × 10−6 4.9 σ 1.4 × 10−19 9.1 σ 1.9 × 10−30 11.5 σ

Fig. 3 We compare B = TG0 and T = TG3, as defined in Table 3, with
D = 2, using K = 5 and Nperm = 1000. The B,T samples have the
same size NB = NT . Left panel: the Z significance of the test for differ-
ent sample sizes. Right panel: the Z significance for different relative

uncertainties added to B only, with fixed NB = NT = 20,000. The U
distribution has been computed with Niter = 1000 random samplings
from the distribution of feature uncertainties

sian distribution. In Table 4 we show the p values and the
corresponding Z significance of the statistical tests for dif-
ferent dimensions D. The results are interpreted as follows.
For D = 2, the first two trial samples TG0, TG1 are not
distinguished from the benchmark B at more than 99% CL
(p > 0.01), while TG2, TG3 are distinguished (p ≤ 0.01, or
equivalently Z ≥ 2.6σ ). Therefore, one would reject the null
hypothesis at more than 99% CL and conclude that the PDFs
from which TG2, TG3 are drawn are different from the bench-
mark PDF pB . It is remarkable that our statistical test is able
to reject the null hypothesis with a large significance of 4.9σ

for two random samples B, TG3 drawn from 2-dimensional
distributions which only differ by a shift of the mean by 15%
along each dimension. For higher dimensionality of the data,
the discriminating power of the test increases, and the null
hypothesis is rejected at more than 5σ significance for all
trial samples TG1, TG2, TG3. The running time to compute
the p value on a standard laptop for two 2-dimensional sam-
ples of 20,000 points each, and for 1000 permutations, was
about 2 minutes. The running time scales linearly with the
number of permutations.

The number of sample points (NB,T ) plays an impor-
tant role. As an example, we sampled the same datasets
B, TG0, TG1, TG2, TG3 with NB = NT = 2000 points, i.e.
ten times less points than for the cases shown in Table 4. The
results for the equivalent significance for TG0, TG1, TG2, TG3

with D = 2 are Z = 1.4σ , 1.9σ , 1.9σ , 2.3σ , respectively.
Clearly, the test is not able to reject the null hypothesis at more
than 99% CL (the p value is never below 0.01, or equivalently

Z < 2.6σ ) in none of the cases. As another illustration of
this point, we run the statistical test forB = TG0 vs T = TG3

for D = 2 and different sample sizes NB = NT , and show
the resulting Z significance in Fig. 3 (left panel). We find that
for NB ≤ 104, the test is not able to reject the null hypothesis
at more than 99% CL. Therefore, the power of our statisti-
cal test increases for larger sample sizes, as expected since
bigger samples lead to more accurate approximations of the
original PDFs.

We have also studied the power performance of our statis-
tical test with respect to parametric competitors. We ran 200
tests of two samples drawn from multivariate Gaussian dis-
tributions with D = 1, 2, 5, with sample sizes NB = NT =
100, and computed the approximated power as the fraction
of runs where the null hypothesis is rejected with signifi-
cance level 5% (p < 0.05). We considered normal location
alternatives, with B ∼ N (0D, ID) and T ∼ N (	D, ID),
where 	 varies from 0.05 to 1.0. As competitor, we choose
the Student’s t test (or its generalization Hotelling’s T 2-test,
for D > 1). We find that our test shows a power compa-
rable to its competitor, in some cases lower than that by
at most a factor of 3, which is satisfactory given that the
T 2-test is parametric and designed to spot location differ-
ences.

Next, we run the statistical test by including uncer-
tainties, as described in Sect. 2.6. For the uncertainties,
we assume uncorrelated Gaussian noise, so the covariance
matrix of the uncertainties is a D-dimensional diagonal
matrix diag(σ 2

1 , . . . , σ 2
D) where each eigenvalue is propor-
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tional to the relative uncertainty ε of the component xi of the
sample point x: σi = εxi .

In Fig. 3 (right panel) we show how the significance of
rejecting the null hypothesis degrades once uncorrelated rel-
ative uncertainties are added to the B sample. For D = 2,
the initial 4.9 σ when comparing B = TG0 and T = TG3

without noise goes down to about 4.1 σ with 10% relative
error.

3.2 Case study: Monojet searches at LHC

A model-independent search at the LHC for physics Beyond
the Standard Model (BSM), such as Dark Matter (DM), has
been elusive [3–6]. Typically it is necessary to simulate the
theoretical signal in a specific model, and compare with data
to test whether the model is excluded. The signal-space for
DM and BSM physics in general is enormous, and despite
thorough efforts, the possibility exists that a signal has been
overlooked. The compatibility test described in Sect. 2 is a
promising technique to overcome this challenge, as it can
search for deviations between the expected simulated Stan-
dard Model signal and the true data, without any knowledge
of the nature of the new physics.

In a real application of our technique by experimental
collaborations, the benchmark dataset B will be a simulation
of the SM background, while the trial dataset T will consist
of real measured data, potentially containing an unknown
mix of SM and BSM events. As a proof-of-principle, we test
whether our method would be sensitive to a DM signature
in the monojet channel. For our study, both B and T will
consist of simulated SM events (‘background’), however T
will additionally contain injected DM events (‘signal’). The
goal is to determine whether the algorithm is sensitive to
differences in B and T caused by this signal.

Model and simulations

The signal comes from a standard simplified DM model (see
e.g. Ref. [44] for a review) with Fermion DM χ and an s-
channel vector Z ′ mediator [45,46]. Our benchmark param-
eters are gχ = 1, gq = 0.1, g
 = 0.01, in order to match
the simplified model constraints from the ATLAS summary
plots [47]. We use a DM mass of 100 GeV, and mediator
masses of (1200, 2000, 3000) GeV, in order to choose points
that are not yet excluded but could potentially be in the
future [47].

Signal and background events are first simulated using
MG5_aMC@NLO v2.6.1 [48] at center-of-mass energy√
s = 13 TeV, with a minimal cut of Emiss

T > 90 GeV, to emu-
late trigger rather than analysis cuts. We use Pythia 8.230 [49]
for hadronization and Delphes 3.4.1 [50] for detector simu-
lation. The so-called ‘monojet’ signal consists of events with
missing energy from DM and at least one high-pT jet. The

resulting signal cross-section is σsignal = (20.4, 3.8, 0.6) pb
for Mmed = (1200, 2000, 3000) GeV respectively. For the
background samples, we simulate 40,000 events of the lead-
ing background, Z → νν̄ + nj where n is 1 or 2, resulting
in a cross section of σbackground = 202.6 pb.

The Delphes ROOT file is converted to LHCO and a fea-
ture vector is extracted with Python for each event, consisting
of pT and η for the two leading jets; the number of jets; miss-
ing energy Emiss

T ; Hadronic energy HT ; and 	φ between the
leading jet and the missing energy. Together this gives an
8-dimensional feature vector (D = 8), which is scaled to
zero-mean unit-variance based on the mean and variance of
the background simulations. This feature vector is chosen to
capture sufficient information about each event while keep
running time of the algorithm reasonable. Other choices of
the feature vector could be chosen to capture different aspects
of the physical processes, including higher- or lower-level
features, such as raw particle 4-vectors. Application of high-
performance computing resources would allow the feature
vector to be enlarged, potentially strengthening results. A full
study of the choice of feature vector is left to future work.
Our simulation technique is simple and designed only as a
proof of principle; we do not include sub-leading SM back-
grounds, nor full detector effects, adopting a generic Delphes
profile.

Test statistic distribution under null hypothesis

Following the technique described in Sect. 2, for each of the
3 considered points in signal model parameter space, we first
construct an empirical distribution of the test statistic under
the null hypothesis, f (TS|H0), and we then measure TSobs

and compute the p value to determine the compatibility of
the datasets. We choose K = 5 and f (TS|H0) is constructed
over Nperm = 3000.

The pool sample B∪T consists of the 40,000 background
events, along with a number of signal events proportional
to the signal cross-section. We define B and T as having
an equal number of background events, so that Nsignal =
20,000 × σsignal/σbackground, NT = 20,000 + Nsignal. The
resulting distribution of TS under the null hypothesis is
shown in Fig. 4. The simulations are relatively fast, taking
approximately an hour per 1000 permutations on a standard
laptop, although computation time grows as a power-law
with the number of events, such that further optimization
and high-performance computing resources will be a neces-
sity for application to real LHC data with many thousands
of events. The statistics of f (TS|H0) converge quickly, as
shown in Fig. 5, consistent with the discussion of Nperm in
Sect. 2.4, and showing that Nperm is more than sufficient.

Note that since B̃, T̃ are chosen from permutations ofB∪
T , it is not necessary to specify how the 40,000 background
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Fig. 4 Distribution of the test statistic under the null hypothesis for our 3 signal points. Overlayed is a Gaussian distribution with the same mean
and standard deviation as the data

Fig. 5 Effect of Nperm on the null-hypothesis test statistic for the mono-
jet study with T2

events are divided between B and T ; It is only necessary to
specify NB and NT at this point.

Observed test statistic

To test whether the null hypothesis would be excluded in the
event of an (otherwise unobserved) DM signal hiding in the
data, we calculate TSobs usingB containing only background,
and T containing background plus a number of signal events
proportional to the relative cross section. In a practical appli-
cation of this technique by the experimental collaborations,B
would instead correspond to background simulations, while
T would be the real-world observation; therefore only one
measurement of TSobs would be performed.

However, in our case the distribution of TS under the null
hypothesis is insensitive to the way the 40,000 background
events are divided between B and T . Therefore we can sim-
ulate multiple real-world measurements of TSobs by dividing
the 40,000 background events between B and T in different
permutations (always keeping 20,000 background events in
each sample). This allows us to be more robust: since TSobs

is itself a random variable, multiple measurements of TSobs

allows us to avoid the claim of a small p value, when in
reality the algorithm may not be sensitive to a small signal.

The calculation of TSobs is performed for 100 random divi-
sions. The p value and significance Z of each TSobs are cal-

culated with respect to the empirical distribution f (TS|H0)

where possible. In many cases, TSobs is so extreme that it
falls outside the measured range of f (TS|H0), in which case
p and Z are determined from a Gaussian distribution with
mean μ̂ and variance σ̂ 2. This is equivalent to assuming that
f (TS|H0) is well-approximated by a Gaussian, which is true
to a good approximation, as seen in Fig. 4. To be conserva-
tive, the technique is only considered sensitive to the signal
if all simulated observations of TS exclude the null hypothe-
sis, i.e. we show the minimum Z significance (and maximum
p value). These results are shown in Table 5, where we see
that the background-only hypothesis is strongly excluded for
T1 and T2, even though these points are not yet excluded by
traditional LHC searches. Bear in mind that this is a proof-
of-concept, and real-world results are unlikely to be as clean,
as discussed in Sect. 3.3.

Inclusion of uncertainties

To test the sensitivity of this technique to uncertainties and
errors in the background simulation, we use the method out-
lined in Sect. 2.6 to estimate the drop in significance when
uncertainties are taken into account. Uncorrelated Gaussian
noise with ε = 10% (as defined in Sect. 3.1) is added to B,
allowing the construction of f (TSu |H0) using Niter = 1000.
Note that while the primary result without uncertainties is
agnostic as to how the overall background sample is divided
between B and T , this is not the case when applying uncer-
tainties. We construct f (TSu |H0) by repeatedly applying dif-
ferent noise to the same B, and so B and T must be defined
from the outset, leaving just one measurement of TSobs, for a
random draw of B and the background component of T from
the overall pool of background simulations. For (T1, T2, T3),
we find that without noise Z = (40, 13, 2.7). Note that as
expected, these are larger than the minimum values over 100
observations reported in Table 5. With ε = 10%, we find that
this reduces to Z = (26, 12, 2.5) for the 3 samples, respec-
tively. This is in line with expectations: while this is a power-
ful technique, limited knowledge of the expected background
will degrade the results. With this in mind, we reiterate that
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Table 5 Summary of monojet results comparing B (background only)
with T (background plus DM signal). The cross section corresponding
to the trial sample is simply given by σT = σbackground + σsignal. The p
value and Z statistic show the compatibility between B and T ; Large Z

indicates that T is not consistent with the background-only hypothesis.
Note that these results will be weakened by application of uncertainties
(see text for details)

Sample Mmed σT [pb] σsignal [pb] max (p value) min (Z )

T1 1.2 TeV 223.0 20.4 < 10−50 > 15 σ

T2 2 TeV 206.4 3.8 5.7 × 10−25 10 σ

T3 3 TeV 203.2 0.6 0.90 0.13 σ

results based on simulations alone should be taken with a
grain of salt. They show the strengths of the statistical test
we are proposing and prove it is worthwhile to investigate it
further, but they will be weakened in a real-world situation.

As an application to experimental data, our technique
could be applied by seeding the simulated background B
with noise associated with uncertainties in the Monte-Carlo
background estimation, or seeding the measured data sample
T with noise associated with systematic uncertainties.

Discussion

To study the threshold to which this technique is sensitive,
we can construct T by adding an arbitrary number of sig-
nal events to the background, without reference to the rela-
tive signal cross-section. The result is shown in Fig. 6 (left
panel), using the signal dataset with Mmed = 2 TeV. For
each value of Nsig, the distribution f (TS|H0) is constructed
over 1000 permutations, and the Z significance is determined
through taking the minimum value of Z over 100 measure-
ments of TSobs for different background permutations. There
is a clear threshold, below which the significance is negligi-
ble and constant, and above which the significance grows as
a power-law. The number of signal events in T2 crosses this
threshold while T3 does not, explaining the rapid drop in the
significance.

The strength of the technique is also sensitive to the num-
ber of samples. Figure 6 (right panel) demonstrates this, again
using the signal dataset with Mmed = 2 TeV, Nperm = 1000,
and taking the minimum Z over 100 measurements of Tobs.
It shows an approximately power-law growth in the signif-
icance, consistent with the same growth in the significance
with number of signal events. Clearly, the more data the bet-
ter.

3.3 Future application to real data

In a practical application of this technique by experimen-
tal collaborations, B would correspond to simulations of the
SM background, while T would be the real-world observa-
tion, consisting of an unknown mix of signal and background
events. Both B and T could be constructed under the same

set of minimal cuts, imposed based on trigger requirements
rather than as a guide to finding new physics. While the tech-
nique itself is model-independent, there is freedom to apply
physical knowledge in the choice of minimal cuts to keep
the background simulation and data load manageable, and in
the choice of feature vector, which can either be low-level
(raw 4-vectors of reconstructed objects, or even pixel hits) or
high-level (missing energy, hadronic energy etc.).

Even though we have only applied our method to a generic
monojet signal, the strength of the algorithm is that it is sensi-
tive to unspecified signals, and is limited only by the accuracy
of the background simulation. We emphasize that our case
study in Sect. 3.2 is a proof of concept with a generic signal
and a naïve estimation of the background.

Accurately estimating SM backgrounds at the LHC is a
significant challenge in the field and must be considered
carefully in any future application of this technique. Cur-
rently used techniques of matching simulations to data in
control regions still allow the use of our method, although
this introduces some model-dependent assumptions. Alter-
natively, one may apply our statistical test in the context of
data-driven background calculation, as a validation tool to
measure the compatibility of Monte-Carlo simulations with
data in control regions.

For instance, it is common practice to tune the nuisance
parameters in order to make the Monte-Carlo simulation of
the background match the data in control regions. When
one deals with more than one control region, this procedure
results in a collection of patches of the feature space, in each
of which the background simulation is fit to the data. The
statistical test we propose in this paper can be used to deter-
mine to what extent (significance) the background simulation
is representative of the data at the global level, in all control
regions. And in case of discrepancies, it can pinpoint the
regions of feature space where the mismatch between data
and simulations is the largest.

As we have shown by implementing sample uncertainties
in our statistical test, the test alone may not be sufficient to
claim discovery in cases where background simulations are
not sufficiently accurate, but this does not weaken the value
of the method. It remains valuable as a tool to identify regions
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Fig. 6 The effect of Nsig (left) and NB (right) on the ability of the algo-
rithm to distinguish B and T . For the left figure, NB = 20,000 back-
ground events and NT = NB + Nsig. (Based on the actual simulated
signal and background cross-sections, the true value is Nsig = 375.) In

the right figure, NT = NB + Nsig, where Nsig varies in proportion to
NB and the relative signal/background cross-sections. In both cases, we
use the trial sample T2 corresponding to the signal with Mmed = 2 TeV

of excess in a model-independent way, allowing follow-up
hand-crafted analyses of potential signal regions.

4 Directions for extensions

In this section we summarize two main directions to extend
and improve the method proposed in this paper. We limit our-
selves to just outlining some ideas, leaving a more complete
analysis of each of these issues to future work.

4.1 Adaptive choice of the number of nearest neighbors

The procedure for the density ratio estimator described in
Sect. 2.3 relies on choosing the number K of NN. As men-
tioned earlier, it is also possible to make the algorithm com-
pletely unsupervised by letting it choose the optimal value
of K .

One approach is to proceed by model selection as in
Refs. [31,39,51]. We define the loss function as a mean-
squared error between the true (unknown) density ratio
r(x) = pT (x)/pB(x) and the estimated density ratio r̂(x) =
p̂T (x)/ p̂B(x) over the benchmark PDF pB(x),

L(r, r̂) = 1

2

∫
[
r̂(x′) − r(x′)

]2
pB(x′)dx′ (4.1)

= 1

2

∫

r̂(x′)2 pB(x′)dx′ −
∫

r̂(x)pT (x)dx

+1

2

∫

r(x′)2 pB(x′)dx′, (4.2)

where the last term is constant and can be dropped, thus
making the loss function independent of the unknown ratio
r(x). The estimated loss function is obtained by replacing the
expectations over the unknown PDF pB with the empirical
averages

L̂(r, r̂) = 1

2NB

∑

x′∈B
r̂(x′)2 − 1

NT

∑

x∈T
r̂(x). (4.3)

So, one can perform model selection by minimizing the esti-
mated loss function (4.3) with respect to the parameter K and
choosing this value of K as the optimal one. However, this
procedure may be computationally intensive as it requires
running the full algorithm several times (one for each differ-
ent value of K ).

Another approach is to implement the Point-Adaptive k-
NN density estimator (PAk) [52–54], which is an algorithm
to automatically find a compromise between large variance
of the k-NN estimator (for small K ), and large bias (for large
K ) due to variations of the density of points.

4.2 Identifying the discrepant regions

Suppose that after running the statistical test described in
this paper one finds a p value leading to a rejection of the
null hypothesis, or at least for evidence of incompatibility
between the original PDFs. This means that the absolute
value of the test statistic on the actual samples |TSobs| is
large enough to deviate from zero significantly (to simplify
the discussion, we assume in this subsection that TSobs > 0
and the distribution of TS has zero mean and unit variance:
μ̂ = 0, σ̂ = 1). Then, our algorithm has a straightforward
by-product: it allows to characterize the regions in feature
space which contribute the most to a large TSobs.

From the expression of the test statistic in Eq. (2.8) we
see that we may associate a density field (x j ) to each point
x j ∈ T as

u(x j ) ≡ log
r j,B
r j,T

, (4.4)

such that the test statistic is simply given by the expecta-
tion value (arithmetic average) of u(x j ) over the whole trial
sample T
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Fig. 7 Upper panel: benchmark (magenta crosses, left) and trial (blue
squares, right) samples. Lower panel: points of trial sample with z >

3.0; this condition isolates the regions where most of the discrepancy
between samples occurs

TSobs = D · ET [u(x j )] + log
NB

NT − 1
. (4.5)

It is then convenient to define a z-score field over the trial
sample, by standard normalization of u(x j ) as

z(x j ) ≡ u(x j ) − ET [u(x j )]
√

VarT [u(x j )]
. (4.6)

One can then use this score field to identify those points in
T which are significantly larger than TSobs, and they can be
interpreted as the regions (or clusters) where the two samples
manifest larger discrepancies.

This way, the z-score field provides a guidance for char-
acterizing the regions in feature space where the discrepancy
is more relevant, similar in spirit to regions of large signal-
to-background ratio. For instance, the points x j with z(x j )

larger than a given threshold, e.g. z(x j ) > 3, are the points
where one expects most of the “anomaly” to occur. An exam-
ple of this is shown in Fig. 7, where a circular B sample is
compared with a cross-like T sample. As expected, the z-
field has higher density in correspondence of the corners of
the cross.

Such regions of highest incompatibility between trial and
benchmark samples may even be clustered using standard

clustering algorithms, thus extending the method studied in
this paper with another unsupervised learning technique.

Once they have been characterized and isolated, these
high-discrepancy regions in feature space can provide a guid-
ance for further investigation, in order to identify what causes
the deviations. For example, they can be used to place data
selection cuts.

5 Conclusions

Many searches for new phenomena in physics (such as
searches for New Physics at the LHC) rely on testing specific
models and parameters. Given the unknown nature of the
physical phenomenon we are searching for, it is becoming
increasingly important to find model-independent methods
that are sensitive to an unknown signal hiding in the data.

The presence of a new phenomenon in data manifests itself
as deviations from the expected distribution of data points in
absence of the phenomenon. So, we propose a general statis-
tical test for assessing the degree of compatibility between
two datasets. Our method is model-independent and non-
parametric, requiring no information about the parameters
or signal spectrum of the new physics being tested; it is also
un-binned, taking advantage of the full multi-dimensional
feature space.

The test statistic we employ to measure the ‘distance’
between two datasets is built upon a nearest-neighbors esti-
mation of their relative local densities. This is compared with
the distribution of the test statistic under the null hypothesis.
Observations of the test statistic at extreme tails of its dis-
tribution indicate that the two datasets come from different
underlying probability densities.

Alongside an indication of the presence of anomalous
events, our method can be applied to characterize the regions
of discrepancy, providing a guidance for further analyses
even in the case where one of the two samples (e.g. the
background) is not known with enough accuracy to claim
discovery.

The statistical test proposed in this paper has a wide
range of scientific and engineering applications, e.g. to decide
whether two datasets can be analyzed jointly, to find outliers
in data, to detect changes of the underlying distributions over
time, to detect anomalous events in time-series data, etc.

In particular, its relevance for particle physics searches at
LHC is clear. In this case the observed data can be compared
with simulations of the Standard Model in order to detect
the presence of New Physics events in the data. Our method
is highly sensitive even to a small number of these events,
showing the strong potential of this technique.
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Appendix: Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence (or distance) is one
of the most fundamental measures in information theory. The
KL divergence of two continuous probability density func-
tions (PDF) P, Q is defined as

DKL(P||Q) ≡
∫

P(x) log
P(x)

Q(x)
dx, (5.1)

and it is a special case of f -divergences.
If the distributions P, Q are not known, but we are only

given two samples P = {xi }NP
i=1 of i.i.d. points drawn from

P and Q = {x′
i }NQ
i=1 of i.i.d. points drawn from Q, it is possi-

ble to estimate the KL divergence using empirical methods.
The estimated KL divergence between the estimated PDFs of
P̂, Q̂ is obtained by replacing the PDFs P, Q with their esti-
mates P̂, Q̂ and replacing the expectation value in Eq. (5.1)
with the empirical (sample) average

D̂KL(P̂||Q̂) = 1

NP

NP∑

j=1

log
P̂(x j )

Q̂(x j )
. (5.2)

For the special case of Gaussian PDFs, the calculation of the
KL divergence is particularly simple. Given two multivariate
(D-dimensional) Gaussian PDFs defined by mean vectors
µ1,2 and covariance matrices 
1,2:

P = N (µ1, 
2), Q = N (µ2, 
2), (5.3)

the KL divergence in Eq. (5.1) is given by

DKL(P||Q) = 1

2

[
(µ2 − µ1)

T
−1
2 (µ2 − µ1)

+Tr(
−1
2 
1) + log

det 
2

det 
1
− D

]

. (5.4)
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