7,651 research outputs found

    Theory of controlled quantum dynamics

    Get PDF
    We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math. Gen., April 199

    IGR J14257-6117, a magnetic accreting white dwarf with a very strong X-ray orbital modulation

    Get PDF
    IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable of the magnetic type. We present the first high S/N X-ray observation performed by \XMM\ at 0.3--10 keV, complemented with 10--80 keV coverage by \Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5\,s and a longer periodic variability at 4.05\,h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the Intermediate Polar (IP) type. The energy resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching ∼100%\sim100\% in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (NH∼1022−23 cm−2{\rm N_{H}\sim10^{22-23}\,cm^{-2}}), partially covering the X-ray source. These are likely localised in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy dependent spin and orbital variabilities, respectively. IGR J14257-6117, joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate (50o ≲ i ≲ 70o50^o\,\lesssim\,i\,\lesssim\,70^o). Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.Comment: Accepted for publication on MNRAS. 9 pages, 6 table, 5 figure

    Constraining f(R) gravity with PLANCK data on galaxy cluster profiles

    Full text link
    Models of f(R)f(R) gravity that introduce corrections to the Newtonian potential in the weak field limit are tested at the scale of galaxy clusters. These models can explain the dynamics of spiral and elliptical galaxies without resorting to dark matter. We compute the pressure profiles of 579 galaxy clusters assuming that the gas is in hydrostatic equilibrium within the potential well of the modified gravitational field. The predicted profiles are compared with the average profile obtained by stacking the data of our cluster sample in the Planck foreground clean map SMICA. We find that the resulting profiles of these systems fit the data without requiring a dominant dark matter component, with model parameters similar to those required to explain the dynamics of galaxies. Our results do not rule out that clusters are dynamically dominated by Dark Matter but support the idea that Extended Theories of Gravity could provide an explanation to the dynamics of self-gravitating systems and to the present period of accelerated expansion, alternative to the concordance cosmological model.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    ESR theory for interacting 1D quantum wires

    Get PDF
    We compute the electron spin resonance (ESR) intensity for one-dimensional quantum wires in semiconductor heterostructures, taking into account electron-electron interactions and spin-orbit coupling. The ESR spectrum is shown to be very sensitive to interactions. While in the absence of interactions, the spectrum is a flat band, characteristic threshold singularities appear in the interacting limit. This suggests the practical use of ESR to reveal spin dynamics in a Luttinger liquid.Comment: 7 pages, 2 figures. To be published in Europhys. Let

    On the strategy frequency problem in batch Minority Games

    Get PDF
    Ergodic stationary states of Minority Games with S strategies per agent can be characterised in terms of the asymptotic probabilities Ï•a\phi_a with which an agent uses aa of his strategies. We propose here a simple and general method to calculate these quantities in batch canonical and grand-canonical models. Known analytic theories are easily recovered as limiting cases and, as a further application, the strategy frequency problem for the batch grand-canonical Minority Game with S=2 is solved. The generalization of these ideas to multi-asset models is also presented. Though similarly based on response function techniques, our approach is alternative to the one recently employed by Shayeghi and Coolen for canonical batch Minority Games with arbitrary number of strategies.Comment: 17 page

    On the transition to efficiency in Minority Games

    Full text link
    The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents' learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal' learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction qq of `optimal' agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the World through Spin Glasses" in honour of David Sherrington on the occasion of his 65th birthda

    Adaptive drivers in a model of urban traffic

    Full text link
    We introduce a simple lattice model of traffic flow in a city where drivers optimize their route-selection in time in order to avoid traffic jams, and study its phase structure as a function of the density of vehicles and of the drivers' behavioral parameters via numerical simulations and mean-field analytical arguments. We identify a phase transition between a low- and a high-density regime. In the latter, inductive drivers may surprisingly behave worse than randomly selecting drivers.Comment: 7 pages, final versio

    Swift J0525.6+2416 and IGR J04571+4527: two new hard X-ray selected magnetic cataclysmic variables identified with XMM-Newton

    Get PDF
    IGR J04571+4527 and Swift J0525.6+2416 are two hard X-ray sources detected in the Swift/BAT and INTEGRAL/IBIS surveys. They were proposed to be magnetic cataclysmic variables of the Intermediate Polar (IP) type, based on optical spectroscopy. IGR J04571+4527 also showed a 1218 s optical periodicity, suggestive of the rotational period of a white dwarf, further pointing towards an IP classification. We here present detailed X-ray (0.3-10 keV) timing and spectral analysis performed with XMM-Newton, complemented with hard X-ray coverage (15-70 keV) from Swift/BAT. These are the first high signal to noise observations in the soft X-ray domain for both sources, allowing us to identify the white dwarf X-ray spin period of Swift J0525.6+2416 (226.28 s), and IGR J04571+4527 (1222.6 s). A model consisting of multi-temperature optically thin emission with complex absorption adequately fits the broad-band spectrum of both sources. We estimate a white dwarf mass of about 1.1 and 1.0 solar masses for IGR J04571+4527 and Swift J0525.6+2416, respectively. The above characteristics allow us to unambiguously classify both sources as IPs, confirming the high incidence of this subclass among hard X-ray emitting Cataclysmic Variables.Comment: 8 pages, 4 figures, 3 tables. Accepted for publication in MNRA

    Magnetic Cataclysmic Variables discovered in hard X-rays

    Full text link
    Among hard X-ray galactic sources detected by INTEGRAL and Swift surveys, those discovered as accreting white dwarfs have surprisingly boosted in number, representing 20% of the galactic sample. The majority are identified as magnetic cataclysmic variabiles of the intermediate polar type suggesting this subclass as an important constituent of galactic population of X-ray sources. In this conference-proceeding, we review the X-ray emission properties as observed with our ongoing XMM-Newton programme of newly discovered INTEGRAL and/or Swift sources that enlarged almost by a factor of two, identifying cataclysmic variabiles commonalities and outliers.Comment: Proceedings of the 12th INTEGRAL conference and 1st AHEAD Gamma-ray Workshop, Geneva (Switzerland), 11-15 February 2019, Ed. C. Ferrigno, E. Bozzo, P. von Balmoos
    • …
    corecore