147 research outputs found

    Gcn5 histone acetyltransferase is present in the mitoplasts

    Get PDF
    In Saccharomyces cerevisiae the Lysine-acetyltransferase Gcn5 (KAT2) is part of the SAGA complex and is responsible for histone acetylation widely or at specific lysines. In this paper we report that GCN5 deletion differently affects the growth of two strains. The defective mitochondrial phenotype is related to a marked decrease in mtDNA content, which also involves the deletion of specific regions of the molecule. We also show that in wild-type mitochondria the Gcn5 protein is present in the mitoplasts, suggesting a new mitochondrial function independent from the SAGA complex and possibly a new function for this protein connecting epigenetics and metabolism

    Développement de capteurs électrochimiques basés sur des ensembles de nanoélectrodes

    Get PDF
    Dans le cadre de cette thèse nous avons élaboré et optimisé une procédure de fabrication de réseaux de nanofils métalliques incorporé dans une matrice de polymère. Les propriétés physico-chimiques des réseaux ont été étudié. La surface constituant un ensemble de nanoélectrodes a été modifiée par des monocouches autoassemblées de molécules possédant des propriétés catalytiques. Ceci a permis ensuite l'adsorption de substances bioactives, comme des enzymes, qui montrent des propriétés de reconnaissance moléculaire. Lénsemble de nanoélectrodes modifié ainsi a été testé avec succès comme biocapteur électrochimique..

    Preliminary Studies on the Iodide Determination in the Marine Environment by Nanoelectrode Ensembles.

    Get PDF
    Ensembles of gold nanodisk electrodes( NEE,- Nano ElectrodesEnsemble)30 nm in diameter are presented, focusing on their capability of furnishing improved signal/background current ratios with respect to conventional electrodes. NEEs are employed here for the voltammetric determination of iodide concentration in samples of interest in marine environmental studies. Specifically, NEEs are applied to determine directly the iodide at micromolar concentration levels in iodized edible salt by cyclic voltammetry as well as at sub-micromolar concentration levels in lagoon waters by square wave voltammetry

    Big-data-driven modeling unveils country-wide drivers of endemic schistosomiasis

    Get PDF
    Schistosomiasis is a parasitic infection that is widespread in sub-Saharan Africa, where it represents a major health problem. We study the drivers of its geographical distribution in Senegal via a spatially explicit network model accounting for epidemiological dynamics driven by local socioeconomic and environmental conditions, and human mobility. The model is parameterized by tapping several available geodatabases and a large dataset of mobile phone traces. It reliably reproduces the observed spatial patterns of regional schistosomiasis prevalence throughout the country, provided that spatial heterogeneity and human mobility are suitably accounted for. Specifically, a fine-grained description of the socioeconomic and environmental heterogeneities involved in local disease transmission is crucial to capturing the spatial variability of disease prevalence, while the inclusion of human mobility significantly improves the explanatory power of the model. Concerning human movement, we find that moderate mobility may reduce disease prevalence, whereas either high or low mobility may result in increased prevalence of infection. The effects of control strategies based on exposure and contamination reduction via improved access to safe water or educational campaigns are also analyzed. To our knowledge, this represents the first application of an integrative schistosomiasis transmission model at a whole-country scale

    The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal

    Get PDF
    AbstractSchistosomiasis is a parasitic, water-related disease that is prevalent in tropical and subtropical areas of the world, causing severe and chronic consequences especially among children. Here we study the spatial spread of this disease within a network of connected villages in the endemic region of the Lower Basin of the Senegal River, in Senegal. The analysis is performed by means of a spatially explicit metapopulation model that couples local-scale eco-epidemiological dynamics with spatial mechanisms related to human mobility (estimated from anonymized mobile phone records), snail dispersal and hydrological transport of schistosome larvae along the main water bodies of the region. Results show that the model produces epidemiological patterns consistent with field observations, and point out the key role of spatial connectivity on the spread of the disease. These findings underline the importance of considering different transport pathways in order to elaborate disease control strategies that can be effective within a network of connected populations

    Role of yUbp8 in Mitochondria and Hypoxia Entangles the Finding of Human Ortholog Usp22 in the Glioblastoma Pseudo-Palisade Microlayer

    Get PDF
    KAT Gcn5 and DUB Ubp8 are required for respiration and mitochondria functions in budding yeast, and in this study we show that loss of respiratory activity is acquired over time. Interestingly, we show that absence of Ubp8 allows cells to grow in hypoxic conditions with altered mitophagy. Comparatively, the aggressive glioblastoma (GBM) multiforme tumor shows survival mechanisms able to overcome hypoxia in the brain. Starting from yeast and our findings on the role of Ubp8 in hypoxia, we extended our analysis to the human ortholog and signature cancer gene Usp22 in glioblastoma tumor specimens. Here we demonstrate that Usp22 is localized and overexpressed in the pseudo-palisade tissue around the necrotic area of the tumor. In addition, Usp22 colocalizes with the mitophagy marker Parkin, indicating a link with mitochondria function in GBM. Collectively, this evidence suggests that altered expression of Usp22 might provide a way for tumor cells to survive in hypoxic conditions, allowing the escape of cells from the necrotic area toward vascularized tissues. Collectively, our experimental data suggest a model for a possible mechanism of uncontrolled proliferation and invasion in glioblastoma

    Analytical characterization of an inulin-type fructooligosaccharide from root-tubers of Asphodelus ramosus L

    Get PDF
    Plant-based systems continue to play a pivotal role in healthcare, and their use has been extensively documented. Asphodelus L. is a genus comprising various herbaceous species, known by the trivial name Asphodelus. These plants have been known since antiquity for both food and therapeutic uses, especially for treating several diseases associated with inflammatory and infectious skin disorders. Phytochemical studies revealed the presence of different constituents, mainly anthraquinones, triterpenoids, phenolic acids, and flavonoids. Although extensive literature has been published on these constituents, a paucity of information has been reported regarding the carbohydrate composition, such as fructans and fructan-like derivatives. The extraction of watersoluble neutral polysaccharides is commonly performed using water extraction, at times assisted by microwaves and ultrasounds. Herein, we reported the investigation of the alkaline extraction of roottubers of Asphodelus ramosus L., analyzing the water-soluble polysaccharides obtained by precipitation from the alkaline extract and its subsequent purification by chromatography. A polysaccharide was isolated by alkaline extraction; the HPTLC study to determine its composition showed fructose as the main monosaccharide. FT-IR analysis showed the presence of an inulin-type structure, and NMR analyses allowed us to conclude that A. ramosus roots contain polysaccharide with an inulin-type fructooligosaccharide with a degree of polymerization of 7-8
    • …
    corecore