132 research outputs found

    Polaron Formation in the Three-Band Peierls-Hubbard Model for Cuprate Superconductors

    Full text link
    Exact diagonalization calculations show a continuous transition from delocalized to small polaron behavior as a function of intersite electron-lattice coupling. A transition, found previously at Hartree-Fock level [Yonemitsu et al., Phys. Rev. Lett. {\bf 69}, 965 (1992)], between a magnetic and a non magnetic state does not subsist when fluctuations are included. Local phonon modes become softer close to the polaron and by comparison with optical measurements of doped cuprates we conclude that they are close to the transition region between polaronic and non-polaronic behavior. The barrier to adiabatically move a hole vanishes in that region suggesting large mobilities.Comment: 7 pages + 3 poscript figures, Revtex 3.0, MSC-199

    Dislocation lines as the precursor of the melting of crystalline solids observed in Monte Carlo simulations

    Full text link
    The microscopic mechanism of the melting of a crystal is analyzed by the constant pressure Monte Carlo simulation of a Lennard-Jones fcc system. Beyond a temperature of the order of 0.8 of the melting temperature, we found that the relevant excitations are lines of defects. Each of these lines has the structure of a random walk of various lengths on an fcc defect lattice. We identify these lines with the dislocation ones proposed in recent phenomenological theories of melting. Near melting we find the appearance of long lines that cross the whole system. We suggest that these long lines are the precursor of the melting process.Comment: 5 pages, 5 figures, accepted in Physical Review Letter

    Polaron and bipolaron formation in the Hubbard-Holstein model: role of next-nearest neighbor electron hopping

    Full text link
    The influence of next-nearest neighbor electron hopping, t′t^{\prime}, on the polaron and bipolaron formation in a square Hubbard-Holstein model is investigated within a variational approach. The results for electron-phonon and electron-electron correlation functions show that a negative value of t′t^{\prime} induces a strong anisotropy in the lattice distortions favoring the formation of nearest neighbor intersite bipolaron. The role of t′t^{\prime}, electron-phonon and electron-electron interactions is briefly discussed in view of the formation of charged striped domains.Comment: 4 figure

    An analytical solution for the rotational component of the Foundation Input Motion induced by a pile group

    Get PDF
    © 2017 Elsevier Ltd This work investigates the effect of the rotational component of input motion induced by the kinematic interaction between a pile group and the surrounding soil on the seismic behaviour of a structure. To this end, a simple analytical model is developed by deriving the pile group behaviour from the seismic response of a single pile, taking into account equilibrium and compatibility of displacements at piles’ heads. Closed-form solutions in the frequency domain are provided for both the translational and the rotational motion of a group of unevenly distributed identical piles, rigidly connected at the top and displaced by the surrounding soil, which is subjected to purely translational oscillations. The proposed solutions, applicable to any subsoil conditions, highlight that pile group layout is the crucial parameter governing the magnitude of the foundation rotation. Further, new transfer functions from the soil surface in free field conditions to the top of a SDOF system are introduced, which take into account the translational and/or rotational kinematic effects. An application of the above concepts to a case study is presented, highlighting that the rotational component of input motion may be important for tall structures on small pile groups

    A Model-Based Methodology for Spray-Drying Process Development

    Get PDF
    Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-drying process development and scale-up are efficient and require minimal time and API. This methodology offers substantive advantages over traditional process-development methods, which are often empirical and require large quantities of API and long development times. This approach is also in alignment with the current guidance on Pharmaceutical Development Q8(R1). The methodology is used from early formulation-screening activities (involving milligrams of API) through process development and scale-up for early clinical supplies (involving kilograms of API) to commercial manufacturing (involving metric tons of API). It has been used to progress numerous spray-dried dispersion formulations, increasing bioavailability of formulations at preclinical through commercial scales

    Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes

    Get PDF
    The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline
    • …
    corecore