43 research outputs found

    Understanding the Distributions of Benthic Foraminifera in the Adriatic Sea with Gradient Forest and Structural Equation Models

    Get PDF
    Abstract: In the last three decades, benthic foraminiferal ecology has been intensively investigated to improve the potential application of these marine organisms as proxies of the effects of climate change and other global change phenomena. It is still challenging to define the most important factors affecting foraminiferal communities and derived faunistic parameters. In this study, we examined the abiotic-biotic relationships of foraminiferal communities in the central-southern area of the Adriatic Sea using modern machine learning techniques. We combined gradient forest (Gf) and structural equation modeling (SEM) to test hypotheses about determinants of benthic foraminiferal assemblages. These approaches helped determine the relative effect of sizes of different environmental variables responsible for shaping living foraminiferal distributions. Four major faunal turnovers (at 13–28 m, 29–58 m, 59–215 m, and >215 m) were identified along a large bathymetric gradient (13–703 m water depth) that reflected the classical bathymetric distribution of benthic communities. Sand and organic matter (OM) contents were identified as the most relevant factors influencing the distribution of foraminifera either along the entire depth gradient or at selected bathymetric ranges. The SEM supported causal hypotheses that focused the factors that shaped assemblages at each bathymetric range, and the most notable causal relationships were direct effects of depth and indirect effects of the Gf-identified environmental parameters (i.e., sand, pollution load Index–PLI, organic matter–OM and total nitrogen–N) on foraminifera infauna and diversity. These results are relevant to understanding the basic ecology and conservation of foraminiferal communitie

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Toward osteogenic differentiation of marrow stromal cells and in vitro production of mineralized extracellular matrix onto natural scaffolds

    Get PDF
    Uncorrected proofTissue engineering has emerged as a new interdisciplinary field for the repair of various tissues, restoring their functions by using scaffolds, cells, and/or bioactive factors. A temporary scaffold acts as an extracellular matrix analog to culture cells and guide the development of new tissue. In this chapter, we discuss the preparation of naturally derived scaffolds of polysaccharide origin, the osteogenic differentiation of mesenchymal stem cells cultured on biomimetic calcium phosphate coatings, and the delivery of biomolecules associated with extracellular matrix mineralization

    aHUS caused by complement dysregulation: new therapies on the horizon

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5–10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS

    Final results of power conditioning of SPIRAL 2 couplers

    No full text
    International audienceCryomodules of the superconducting accelerator SPIRAL 2 have been successfully qualified and are now under commissioning on the linac at GANIL (France). This paper presents the successful results of the power conditioning of the couplers both on a test bench in Grenoble and during the cryomodules qualification. It also shows the influence of some factors, such as surface state and experiencing a cavity quench around the antenna, on the power conditioning process (duration, quality)
    corecore