25,415 research outputs found

    Absence of Gluonic Components in Axial and Tensor Mesons

    Get PDF
    A quarkonium-gluonium mixing scheme previously developed to describe the characteristic of the pseudoscalar mesons is applied to axial and tensor mesons. The parameters of the model are determined by fitting the eigenvalues of a mass matrix. The corresponding eigenvectors give the proportion of light quarks, strange quarks and glueball in each meson. However the predictions of the model for branching ratios and electromagnetic decays are incompatible with the experimental results. These results suggest the absence of gluonic components in the states of axial and tensor isosinglet mesons analyzed here.Comment: 12 page

    Chemical abundances and kinematics of barium stars

    Get PDF
    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alphaalpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alphaalpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.Comment: 30 pages, 26 figures, 18 tables, accepted for publication in MNRA

    The formation of planetary disks and winds: an ultraviolet view

    Full text link
    Planetary systems are angular momentum reservoirs generated during star formation. This accretion process produces very powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating thus the temperature of the engine ranges from the 3000K of the inner disk material to the 10MK in the areas where magnetic reconnection occurs. There are important unsolved problems concerning the nature of the engine, its evolution and the impact of the engine in the chemical evolution of the inner disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ougth to be studied in the UV. This contribution focus on describing the connections between 1 Myr old suns and the Sun and the requirements for new UV instrumentation to address their evolution during this period. Two types of observations are shown to be needed: monitoring programmes and high resolution imaging down to, at least, milliarsecond scales.Comment: Accepted for publication in Astrophysics and Space Science 9 figure

    Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Get PDF
    Experimental Fowler-Nordheim plots taken from orthodoxly behaving carbon nanotube (CNT) field electron emitters are known to be linear. This shows that, for such emitters, there exists a characteristic field enhancement factor (FEF) that is constant for a range of applied voltages and applied macroscopic fields FMF_\text{M}. A constant FEF of this kind can be evaluated for classical CNT emitter models by finite-element and other methods, but (apparently contrary to experiment) several past quantum-mechanical (QM) CNT calculations find FEF-values that vary with FMF_\text{M}. A common feature of most such calculations is that they focus only on deriving the CNT real-charge distributions. Here we report on calculations that use density functional theory (DFT) to derive real-charge distributions, and then use these to generate the related induced-charge distributions and related fields and FEFs. We have analysed three carbon nanostructures involving CNT-like nanoprotrusions of various lengths, and have also simulated geometrically equivalent classical emitter models, using finite-element methods. We find that when the DFT-generated local induced FEFs (LIFEFs) are used, the resulting values are effectively independent of macroscopic field, and behave in the same qualitative manner as the classical FEF-values. Further, there is fair to good quantitative agreement between a characteristic FEF determined classically and the equivalent characteristic LIFEF generated via DFT approaches. Although many issues of detail remain to be explored, this appears to be a significant step forwards in linking classical and QM theories of CNT electrostatics. It also shows clearly that, for ideal CNTs, the known experimental constancy of the FEF value for a range of macroscopic fields can also be found in appropriately developed QM theory.Comment: A slightly revised version has been published - citation below - under a title different from that originally used. The new title is: "Restoring observed classical behavior of the carbon nanotube field emission enhancement factor from the electronic structure

    Cultura do girassol: tecnologia de produção.

    Get PDF
    Escolha da area e preparo do solo; Correcao da acidez; Adubacao; Epoca de plantio; Plantio; Densidade; Controle de plantas daninhas; Doencas e pragas; Colheita.bitstream/item/60796/1/Documentos-67.pd

    Cultura do girassol: tecnologia de produção.

    Get PDF
    Escolha de area e preparo do solo; Correcao da acidez; Adubacao; Epoca de plantio; Plantio; Densidade; Controle de plantas daninhas; Doencas e pragas; Colheita.bitstream/item/61288/1/Documentos-67-1996.pdf2. ed. rev. aum

    Enraizamento de estacas de urucuzeiro Bixa orellana L.

    Get PDF
    bitstream/item/34014/1/CPATU-CirTec55-2.pd
    corecore