64 research outputs found

    The Lower Miocene volcaniclastic sedimentation in the Sicilian sector of the Maghrebian Flysch Basin: geodynamic implications

    Get PDF
    Abstract Volcaniclastic debris-rich formations, characterising the Troina–Tusa Unit in the Sicilian Maghrebian Chain, are examined. The Troina–Tusa Unit terrains sedimented in the Maghrebian Flysch Basin, which, from Jurassic to Early Miocene, constituted the southernmost branch of the Western Tethys, located between Africa and the Mesomediterranean Terrane margins. New field, biostratigraphic and petrographic data enable a reconstruction of the palaeogeographic and structural evolution of the Flysch Basin immediately before its deformation. All the studied formations transpired to be Burdigalian in age. The sandstone compositions, showing different source areas (magmatic arc, recycled orogen and continental block), indicate a provenance for the clastic material from a crystalline basement with an active volcanic arc, replaced by a remnant volcanic arc, which was rapidly completely eroded. The source area that has been considered is Sardinia, where Upper Oligocene–Aquitanian calc-alkaline volcanites are widespread, but the sedimentological characteristics and the Burdigalian age do not fit with this provenance. The Burdigalian calc-alkaline arc should be located on the internal side of the Troina–Tusa Basin, above the already stacked Peloritanian units. A migration of the volcanic activity, connected with the subduction plain roll-back, can be envisaged from the Sardinia Block to the Peloritanian Chain, this latter still docked to the Sardinia–Corsica massif

    ADP-ribose polymers localized on Ctcf–Parp1–Dnmt1 complex prevent methylation of Ctcf target sites

    Get PDF
    PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status

    Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its Enzymatic Activity

    Get PDF
    Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found.Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation.In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression

    Biostratigrafia integrata, significato ed eta’ degli apporti torbiditici carbonatici terziari nel "Bacino dei Flysch Maghrebidi" e nella sua continuazione in catena appenninica

    No full text
    In questo lavoro ù stato effettuato un dettagliato studio biostratigrafico integrato di nannofossili calcarei e cisti di dinoflagellati di unità derivanti da un dominio paleogeografico i cui terreni sono noti dalla Cordigliera Betica alla Sicilia, passando attraverso il Rif e il Tell e fino in Appennino. Sono state effettuate campionature in tutta l’area di affioramento della formazione torbiditica carbonatica cercando di datarne, in particolare, l’inizio e la fine per verificare il carattere di “evento” da confrontare con le curve eustatiche. Il lavoro ha permesso di raggiungere interessanti risultati, utili per una migliore ricostruzione dell’evoluzione paleogeografica e tettono-sedimentaria terziaria degli orogeni circummediterranei
    • 

    corecore