8 research outputs found

    New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens—a PARC project

    No full text
    Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens

    Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase

    No full text

    Selenium Status in Elderly People: Longevity and Age-Related Diseases

    No full text

    First-line antiretroviral therapy with a protease inhibitor versus non-nucleoside reverse transcriptase inhibitor and switch at higher versus low viral load in HIV-infected children: An open-label, randomised phase 2/3 trial

    No full text
    Background: Children with HIV will be on antiretroviral therapy (ART) longer than adults, and therefore the durability of first-line ART and timing of switch to second-line are key questions. We assess the long-term outcome of protease inhibitor and non-nucleoside reverse transcriptase inhibitor (NNRTI) first-line ART and viral load switch criteria in children. Methods: In a randomised open-label factorial trial, we compared effectiveness of two nucleoside reverse transcriptase inhibitors (NRTIs) plus a protease inhibitor versus two NRTIs plus an NNRTI and of switch to second-line ART at a viral load of 1000 copies per mL versus 30 000 copies per mL in previously untreated children infected with HIV from Europe and North and South America. Random assignment was by computer-generated sequentially numbered lists stratified by age, region, and by exposure to perinatal ART. Primary outcome was change in viral load between baseline and 4 years. Analysis was by intention to treat, which we defined as all patients that started treatment. This study is registered with ISRCTN, number ISRCTN73318385. Findings: Between Sept 25, 2002, and Sept 7, 2005, 266 children (median age 6\ub75 years; IQR 2\ub78-12\ub79) were randomly assigned treatment regimens: 66 to receive protease inhibitor and switch to second-line at 1000 copies per mL (PI-low), 65 protease inhibitor and switch at 30 000 copies per mL (PI-higher), 68 NNRTI and switch at 1000 copies per mL (NNRTI-low), and 67 NNRTI and switch at 30 000 copies per mL (NNRTI-higher). Median follow-up was 5\ub70 years (IQR 4\ub72-6\ub70) and 188 (71%) children were on first-line ART at trial end. At 4 years, mean reductions in viral load were -3\ub716 log10copies per mL for protease inhibitors versus -3\ub731 log10copies per mL for NNRTIs (difference -0\ub715 log10copies per mL, 95% CI -0\ub741 to 0\ub711; p=0\ub726), and -3\ub726 log10copies per mL for switching at the low versus -3\ub720 log10copies per mL for switching at the higher threshold (difference 0\ub706 log10copies per mL, 95% CI -0\ub720 to 0\ub732; p=0\ub756). Protease inhibitor resistance was uncommon and there was no increase in NRTI resistance in the PI-higher compared with the PI-low group. NNRTI resistance was selected early, and about 10% more children accumulated NRTI mutations in the NNRTI-higher than the NNRTI-low group. Nine children had new CDC stage-C events and 60 had grade 3/4 adverse events; both were balanced across randomised groups. Interpretation: Good long-term outcomes were achieved with all treatments strategies. Delayed switching of protease-inhibitor-based ART might be reasonable where future drug options are limited, because the risk of selecting for NRTI and protease-inhibitor resistance is low. Funding: Paediatric European Network for Treatment of AIDS (PENTA) and Pediatric AIDS Clinical Trials Group (PACTG/IMPAACT). \ua9 2011 Elsevier Ltd
    corecore