32 research outputs found

    Inner-sphere oxidation of ternary iminodiacetatochromium(III) complexes involving DL-valine and L-arginine as secondary ligands. Isokinetic relationship for the oxidation of ternary iminodiacetato-chromium(III) complexes by periodate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this paper, the kinetics of oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>(HIDA = iminodiacetic acid, Val = DL-valine and Arg = L-arginine) were studied. The choice of ternary complexes was attributed to two considerations. Firstly, in order to study the effect of the secondary ligands DL-valine and L-arginine on the stability of binary complex [Cr<sup>III</sup>(HIDA)(IDA)(H<sub>2</sub>O)] towards oxidation. Secondly, transition metal ternary complexes have received particular focus and have been employed in mapping protein surfaces as probes for biological redox centers and in protein capture for both purification and study.</p> <p>Results</p> <p>The results have shown that the reaction is first order with respect to both [IO<sub>4</sub><sup>-</sup>] and the complex concentration, and the rate increases over the pH range 2.62 – 3.68 in both cases. The experimental rate law is consistent with a mechanism in which both the deprotonated forms of the complexes [Cr<sup>III</sup>(IDA)(Val)(H<sub>2</sub>O)<sub>2</sub>] and [Cr<sup>III</sup>(IDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>] are significantly more reactive than the conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3 </sub>(1.82 × 10<sup>-3 </sup>s<sup>-1</sup>), is greater than the value of <it>k</it><sub>1 </sub>(1.22 × 10<sup>-3 </sup>s<sup>-1</sup>) for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>at 45.0°C and <it>I </it>= 0.20 mol dm<sup>-3</sup>. It is proposed that electron transfer proceeds through an inner-sphere mechanism <it>via </it>coordination of IO<sub>4</sub><sup>- </sup>to chromium(III).</p> <p>Conclusion</p> <p>The oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>and [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+ </sup>by periodate may proceed through an inner-sphere mechanism via two electron transfer giving chromium(VI). The value of the intramolecular electron transfer rate constant for the oxidation of [Cr<sup>III</sup>(HIDA)(Arg)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>, <it>k</it><sub>3</sub>, is greater than the value of <it>k</it><sub>1 </sub>for the oxidation of [Cr<sup>III</sup>(HIDA)(Val)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>. A common mechanism for the oxidation of ternary iminodiacetatochromium(III) complexes by periodate is proposed, and this is supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.</p

    Literaturverzeichnis

    No full text

    Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by candida guilliermondii

    No full text
    The inhibitory action of acetic acid, ferulic acid, and syringaldehyde on metabolism of Candida guilliermondii yeast during xylose to xylitol bioconversion was evaluated. Assays were performed in buffered and nonbuffered semidefined medium containing xylose as main sugar (80.0 g/l), supplemented or not with acetic acid (0.8–2.6 g/l), ferulic acid (0.2–0.6 g/l), and/or syringaldehyde (0.3–0.8 g/l), according to a 23 full factorial design. Since only individual effects of the variables were observed, assays were performed in a next step in semidefined medium containing different concentrations of each toxic compound individually, for better understanding of their maximum concentration that can be present in the fermentation medium without affecting yeast metabolism. It was concluded that acetic acid, ferulic acid, and syringaldehyde are compounds that may affect Candida guilliermondii metabolism (mainly cell growth) during bioconversion of xylose to xylitol. Such results are of interest and reveal that complete removal of toxic compounds from the fermentation medium is not necessary to obtain efficient conversion of xylose to xylitol by Candida guilliermondii. Fermentation in buffered medium was also considered as an alternative to overcome the inhibition caused by these toxic compounds, mainly by acetic acid
    corecore