270 research outputs found

    Chemiluminescence of the Reaction System Ce(IV) - Non-Steroidal Anti-Inflammatory Drugs Containing Europium(III) Ions and its Application to the Determination of Naproxen in Pharmaceutical Preparations and Urine

    Get PDF
    The chemiluminescence (CL) of oxidation of non-steroidal anti-inflammatory drugs (NSAIDs) by Ce(IV) ions, was recorded in the presence and absence europium(III) ions, in solution of pH ~ 4 of solution. Kinetic curves and CL emission spectra of the all studied systems were discussed. CL of measurable intensity was observed in the Ce(IV)–NP–Eu(III) reaction system only in acidic solutions. The CL spectrum rcegistered for this system shows emission bands, typical of Eu(III) ions, with maximum at λ ~ 600 nm. The chemiluminescent method, based on Eu(III) emission in reaction system of NP-Ce(IV)–Eu(III) in acid solution was therefore used for the determination of naproxen in mixture of non-steroidal anti-inflammatory drugs

    A paediatric bone index derived by automated radiogrammetry

    Get PDF
    Hand radiographs are obtained routinely to determine bone age of children. This paper presents a method that determines a Paediatric Bone Index automatically from such radiographs. The Paediatric Bone Index is designed to have minimal relative standard deviation (7.5%), and the precision is determined to be 1.42%. Introduction We present a computerised method to determine bone mass of children based on hand radiographs, including a reference database for normal Caucasian children. Methods Normal Danish subjects (1,867), of ages 7-17, and 531 normal Dutch subjects of ages 5-19 were included. Historically, three different indices of bone mass have been used in radiogrammetry all based on A = pi TW(1 - T/W), where T is the cortical thickness and W the bone width. The indices are the metacarpal index A/W-2, DXR-BMD=A/W, and Exton-Smith's index A/(WL), where L is the length of the bone. These indices are compared with new indices of the form A/((WLb)-L-a), and it is argued that the preferred index has minimal SD relative to the mean value at each bone age and sex. Finally, longitudinal series of X-rays of 20 Japanese children are used to derive the precision of the measurements. Results The preferred index is A/((WL0.33)-L-1.33), which is named the Paediatric Bone Index, PBI. It has mean relative SD 7.5% and precision 1.42%. Conclusions As part of the BoneXpert method for automated bone age determination, our method facilitates retrospective research studies involving validation of the proposed index against fracture incidence and adult bone mineral densit

    Adolescent standing postural response to backpack loads: a randomised controlled experimental study

    Get PDF
    BACKGROUND: Backpack loads produce changes in standing posture when compared with unloaded posture. Although 'poor' unloaded standing posture has been related to spinal pain, there is little evidence of whether, and how much, exposure to posterior load produces injurious effects on spinal tissue. The objective of this study was to describe the effect on adolescent sagittal plane standing posture of different loads and positions of a common design of school backpack. The underlying study aim was to test the appropriateness of two adult 'rules-of-thumb'-that for postural efficiency, backpacks should be worn high on the spine, and loads should be limited to 10% of body weight. METHOD: A randomised controlled experimental study was conducted on 250 adolescents (12–18 years), randomly selected from five South Australian metropolitan high schools. Sagittal view anatomical points were marked on head, neck, shoulder, hip, thigh, knee and ankle. There were nine experimental conditions: combinations of backpack loads (3, 5 or 10% of body weight) and positions (backpack centred at T7, T12 or L3). Sagittal plane photographs were taken of unloaded standing posture (baseline), and standing posture under the experimental conditions. Posture was quantified from the x (horizontal) coordinate of each anatomical point under each experimental condition. Differences in postural response were described, and differences between conditions were determined using Analysis of Variance models. RESULTS: Neither age nor gender was a significant factor when comparing postural response to backpack loads or conditions. Backpacks positioned at T7 produced the largest forward (horizontal) displacement at all the anatomical points. The horizontal position of all anatomical points increased linearly with load. CONCLUSION: There is evidence refuting the 'rule-of-thumb' to carry the backpack high on the back. Typical school backpacks should be positioned with the centre at waist or hip level. There is no evidence for the 10% body weight limit

    Anemia and chronic kidney disease are associated with poor outcomes in heart failure patients

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) has been linked to higher heart failure (HF) risk. Anemia is a common consequence of CKD, and recent evidence suggests that anemia is a risk factor for HF. The purpose of this study was to examine among patients with HF, the association between CKD, anemia and inhospital mortality and early readmission. METHODS: We performed a retrospective cohort study in two Swiss university hospitals. Subjects were selected based the presence of ICD-10 HF codes in 1999. We recorded demographic characteristics and risk factors for HF. CKD was defined as a serum creatinine ≥ 124 956;mol/L for women and ≥ 133 μmol/L for men. The main outcome measures were inhospital mortality and thirty-day readmissions. RESULTS: Among 955 eligible patients hospitalized with heart failure, 23.0% had CKD. Twenty percent and 6.1% of individuals with and without CKD, respectively, died at the hospital (p < 0.0001). Overall, after adjustment for other patient factors, creatinine and hemoglobin were associated with an increased risk of death at the hospital, and hemoglobin was related to early readmission. CONCLUSION: Both CKD and anemia are frequent among older patients with heart failure and are predictors of adverse outcomes, independent of other known risk factors for heart failure

    FRET characterisation for cross-bridge dynamics in single-skinned rigor muscle fibres

    Get PDF
    In this work we demonstrate for the first time the use of Förster resonance energy transfer (FRET) as an assay to monitor the dynamics of cross-bridge conformational changes directly in single muscle fibres. The advantage of FRET imaging is its ability to measure distances in the nanometre range, relevant for structural changes in actomyosin cross-bridges. To reach this goal we have used several FRET couples to investigate different locations in the actomyosin complex. We exchanged the native essential light chain of myosin with a recombinant essential light chain labelled with various thiol-reactive chromophores. The second fluorophore of the FRET couple was introduced by three approaches: labelling actin, labelling SH1 cysteine and binding an adenosine triphosphate (ATP) analogue. We characterise FRET in rigor cross-bridges: in this condition muscle fibres are well described by a single FRET population model which allows us to evaluate the true FRET efficiency for a single couple and the consequent donor–acceptor distance. The results obtained are in good agreement with the distances expected from crystallographic data. The FRET characterisation presented herein is essential before moving onto dynamic measurements, as the FRET efficiency differences to be detected in an active muscle fibre are on the order of 10–15% of the FRET efficiencies evaluated here. This means that, to obtain reliable results to monitor the dynamics of cross-bridge conformational changes, we had to fully characterise the system in a steady-state condition, demonstrating firstly the possibility to detect FRET and secondly the viability of the present approach to distinguish small FRET variations

    Role of Alpha-Synuclein Protein Levels in Mitochondrial Morphology and Cell Survival in Cell Lines

    Get PDF
    α-Synuclein is highly associated with some neurodegeneration and malignancies. Overexpressing wild-type or mutant α-synuclein promotes neuronal death by mitochondrial dysfunction, the underlying mechanisms of which remain poorly defined. It was recently reported that α-synuclein expression could directly lead to mitochondrial fragmentation in vitro and in vivo, which may be due to α-synuclein localization on mitochondria. Here, we applied a double staining method to demonstrate mitochondrial morphogenetic changes in cells overexpressed with α-synuclein. We show that mitochondrial localization of α-synuclein was increased following its overexpression in three distinct cell lines, including HeLa, SH-SY5Y, and PC12 cells, but no alteration in mitochondrial morphology was detected. However, α-synuclein knockdown prevents MPP+-induced mitochondrial fragmentation in SH-SY5Y and PC12 cells. These data suggest that α-synuclein protein levels hardly affect mitochondrial morphology in normal cell lines, but may have some influence on that under certain environmental conditions
    corecore