34 research outputs found

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Get PDF
    Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers

    Behavioural Thermoregulatory Tactics in Lacustrine Brook Charr, Salvelinus fontinalis

    Get PDF
    The need to vary body temperature to optimize physiological processes can lead to thermoregulatory behaviours, particularly in ectotherms. Despite some evidence of within-population phenotypic variation in thermal behaviour, the occurrence of alternative tactics of this behaviour is rarely explicitly considered when studying natural populations. The main objective of this study was to determine whether different thermal tactics exist among individuals of the same population. We studied the behavioural thermoregulation of 33 adult brook charr in a stratified lake using thermo-sensitive radio transmitters that measured hourly individual temperature over one month. The observed behavioural thermoregulatory patterns were consistent between years and suggest the existence of four tactics: two “warm” tactics with both crepuscular and finer periodicities, with or without a diel periodicity, and two “cool” tactics, with or without a diel periodicity. Telemetry data support the above findings by showing that the different tactics are associated with different patterns of diel horizontal movements. Taken together, our results show a clear spatio-temporal segregation of individuals displaying different tactics, suggesting a reduction of niche overlap. To our knowledge, this is the first study showing the presence of behavioural thermoregulatory tactics in a vertebrate

    Fish population responses to hydrological variation in a seasonal wetland in southeast México

    Full text link
    ABSTRACT Hydrological variation differently affects fish species. In the present study, the response of local populations of 13 fish local species to hydrological variation in a tropical wetland was evaluated. The objectives were to analyze the abundance response of fish species with distinct life history strategies and to assess the role of hydrological variation on fish population patterns. We found that opportunistic strategists were favored by high hydrological variation in drought periods, the equilibrium strategists were related to stable habitats, and periodic strategists were regulated by floods and temperature. However, the life history strategies identified for some species in this study do not correspond to the classification reported in other studies. Our results highlight the importance to study the abundance responses of species at local and regional scales to identify variations in life-history strategies, which can reflect local adaptations of species to hydrological changes, this is useful in order to understand and predict the responses of fish populations to the local environment

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Full text link

    Modeling effects of disturbance across life history strategies of stream fishes

    No full text
    A central goal of population ecology is to establish linkages between life history strategy, disturbance, and population dynamics. Globally, disturbance events such as drought and invasive species have dramatically impacted stream fish populations and contributed to sharp declines in freshwater biodiversity. Here, we used RAMAS Metapop to construct stage-based demographic metapopulation models for stream fishes with periodic, opportunistic, and equilibrium life history strategies and assessed their responses to the effects of invasion (reduced carrying capacity), extended drought (reduced survival and fecundity), and the combined effects of both disturbances. Our models indicated that populations respond differentially to disturbance based on life history strategy. Equilibrium strategists were best able to deal with simulated invasion. Periodic strategists did well under lower levels of drought, whereas opportunistic strategists outperformed other life histories under extreme seasonal drought. When we modeled additive effects scenarios, these disturbances interacted synergistically, dramatically increasing terminal extinction risk for all three life history strategies. Modeling exercises that examine broad life history categories can help to answer fundamental ecological questions about the relationship between disturbance resilience and life history, as well as help managers to develop generalized conservation strategies when species-specific data are lacking. Our results indicate that life history strategy is a fundamental determinant of population trajectories, and that disturbances can interact synergistically to dramatically impact extinction outcomes.No Full Tex

    Short, medium and long-term effects of density on the demographic traits of a threatened newt

    No full text
    Mediterranean streams undergo seasonal reductions in water availability that may affect amphibian demography due to habitat loss and the concentration of individuals in the shrinking aquatic habitats. However, there are few empirical examples of how increased population density experienced by larval stages produces long-term effects on growth and fitness at postmetamorphic stages. We tested the effect of four different larval densities on the demography and growth of the endangered stream-dwelling newt Euproctus platycephalus. By manipulating larval populations in experimental aquaria, we analyzed the short-term effects of density in terms of growth and mortality rates as well as of social behavior. To assess medium- and long-term effects we tested the metamorph individuals after 1 and 3 years, respectively, and adults for maternal effect by assessing the relationship between mean larval size and fecundity. Larval body size and growth rate appeared inversely proportional to larval density. Density affected the incidence of aggressive behavior by increasing the rate of mutilation to arms and tail. One-year-old salamanders raised at the highest larval density grew significantly less. All 3-year-old individuals reached comparable body size and body condition irrespective of initial larval density. Salamanders presented a positive relationship between maternal size and (1) fecundity and (2) larval size. In natural conditions, increased density may cause slower growth and a reduction in the percentage of individuals reaching metamorphosis. Prolonged dry periods and increased water withdrawals for agricultural and industrial practices have almost certainly affected the population dynamics of Sardinian newt populations in the long term
    corecore