524 research outputs found

    Risk Of Incidence Of Hock Burn And Pododermatitis In Broilers Reared Under Commercial Conditions

    Get PDF
    The most common lesions observed in commercial broiler farms are hock burns and pododermatitis, defined as necrotic lesions on the plantar surface of the footpads and in the hock of growing broilers, causing pain and compromising broiler welfare. The present study aimed at identifying the risks of hock burns and pododermatitis in broilers reared under commercial conditions on new or reused litter. Twenty-four 40-d-old broilers reared in two houses in a commercial broiler farm. The plantar surface of the footpads and the hocks of broiler were recorded using infrared thermal images. The incidence of hock burns in broilers reared on new litter was 0.72 times lower than those on reused litter. Broilers reared on new litter presented lower risk (0.75, RR<1) of presenting pododermatitis when compared to those reared on reused litter. When simulating the risk using a larger sample, the simulated risk of broilers presenting footpad and hock lesions when reared on new litter was 38% higher those reared on reused litter.19335736

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research

    Cost of Mating and Insemination Capacity of a Genetically Modified Mosquito Aedes aegypti OX513A Compared to Its Wild Type Counterpart

    Get PDF
    The idea of implementing genetics-based insect control strategies modelled on the traditional SIT is becoming increasingly popular. In this paper we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with its wild type counterpart with respect to their insemination capacities and the cost of courtship and mating. Genetically modified males inseminated just over half as many females as the wild type males during their lifetime. Providing days of rest from mating had no significant effect on the total number of females inseminated by males of either line, but it did increase their longevity. Producing sperm had a low cost in terms of energy investment; the cost of transferring this sperm to a receptive female was much higher. Continued mating attempts with refractory females suggest that males could not identify refractory females before investing substantial energy in courtship. Although over a lifetime OX513A males inseminated fewer females, the number of females inseminated over the first three days, was similar between males of the two lines, suggesting that the identified cost of RIDL may have little impact on the outcome of SIT-based control programmes with frequent releases of the genetically modified males

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
    • …
    corecore