371 research outputs found

    Accumulating Variation at Conserved Sites in Potyvirus Genomes Is Driven by Species Discovery and Affects Degenerate Primer Design

    Get PDF
    Unknown and foreign viruses can be detected using degenerate primers targeted at conserved sites in the known viral gene sequences. Conserved sites are found by comparing sequences and so the usefulness of a set of primers depends crucially on how well the known sequences represent the target group including unknown sequences. Methodology/Principal Findings: We developed a method for assessing the apparent stability of consensus sequences at sites over time using deposition dates from Genbank. We tested the method using 17 conserved sites in potyvirus genomes. The accumulation of knowledge of sequence variants over 20 years caused ‘consensus decay ’ of the sites. Rates of decay were rapid at all sites but varied widely and as a result, the ranking of the most conserved sites changed. The discovery and reporting of sequences from previously unknown and distinct species, rather than from strains of known species, dominated the decay, indicating it was largely a sampling effect related to the progressive discovery of species, and recent virus mutation was probably only a minor contributing factor. Conclusion/Significance: We showed that in the past, the sampling bias has misled the choice of the most conserved target sites for genus specific degenerate primers. The history of sequence discoveries indicates primer designs should be update

    Lung Cancer Risk after Exposure to Polycyclic Aromatic Hydrocarbons: A Review and Meta-Analysis

    Get PDF
    Typical polycyclic aromatic hydrocarbon mixtures are established lung carcinogens, but the quantitative exposure–response relationship is less clear. To clarify this relationship we conducted a review and meta-analysis of published reports of occupational epidemiologic studies. Thirty-nine cohorts were included. The average estimated unit relative risk (URR) at 100 μg/m(3) years benzo[a]pyrene was 1.20 [95% confidence interval (CI), 1.11–1.29] and was not sensitive to particular studies or analytic methods. However, the URR varied by industry. The estimated means in coke ovens, gasworks, and aluminum production works were similar (1.15–1.17). Average URRs in other industries were higher but imprecisely estimated, with those for asphalt (17.5; CI, 4.21–72.78) and chimney sweeps (16.2; CI, 1.64–160.7) significantly higher than the three above. There was no statistically significant variation of URRs within industry or in relation to study design (including whether adjusted for smoking), or source of exposure information. Limited information on total dust exposure did not suggest that dust exposure was an important confounder or modified the effect. These results provide a more secure basis for risk assessment than was previously available

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    The Prehistory of Potyviruses: Their Initial Radiation Was during the Dawn of Agriculture

    Get PDF
    Background: Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. Methods and Findings: We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. Conclusions/Significance: Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.1561024 nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation

    The influence of interactions with students for the development of new academics as teachers in higher education

    Get PDF
    The aim of the current investigation was to provide an insight into how new lecturers in higher education develop as teachers and to identify some of the main influences upon this development. A qualitative, longitudinal design with three semi-structured interviews over a 2-year period was employed with eleven new teachers from a range of higher education institutions and settings. The analysis used case studies, alongside a thematic analysis, to provide fine-grained and idiosyncratic insights into the teachers’ development. The principal finding from the current study was the identification that instances of interactions with students, acted as a core influence upon the new teachers’ development. These instances appeared to provide the teachers with richer and fuller feedback about their teaching. This feedback supported their reflection and influenced the way in which they thought about teaching. Based on these findings it is suggested that teacher development could be enhanced by focussing upon specific instances of interactions with students as these instances provide specific and tangible moments that allow individuals to reflect upon and discuss their conceptions of teaching

    Application of Equilibrium Models of Solution Hybridization to Microarray Design and Analysis

    Get PDF
    Background: The probe percent bound value, calculated using multi-state equilibrium models of solution hybridization, is shown to be useful in understanding the hybridization behavior of microarray probes having 50 nucleotides, with and without mismatches. These longer oligonucleotides are in widespread use on microarrays, but there are few controlled studies of their interactions with mismatched targets compared to 25-mer based platforms. Principal Findings: 50-mer oligonucleotides with centrally placed single, double and triple mismatches were spotted on an array. Over a range of target concentrations it was possible to discriminate binding to perfect matches and mismatches, and the type of mismatch could be predicted accurately in the concentration midrange (100 pM to 200 pM) using solution hybridization modeling methods. These results have implications for microarray design, optimization and analysis methods. Conclusions: Our results highlight the importance of incorporating biophysical factors in both the design and the analysis of microarrays. Use of the probe ‘‘percent bound’ ’ value predicted by equilibrium models of hybridization is confirmed to be important for predicting and interpreting the behavior of long oligonucleotide arrays, as has been shown for shor
    corecore