9 research outputs found

    Foliar water uptake: a common water acquisition strategy for plants of the redwood forest

    Get PDF
    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2–11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials

    Estimates of linkage disequilibrium and effective population size in rainbow trout

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of molecular genetic technologies for broodstock management and selective breeding of aquaculture species is becoming increasingly more common with the continued development of genome tools and reagents. Several laboratories have produced genetic maps for rainbow trout to aid in the identification of loci affecting phenotypes of interest. These maps have resulted in the identification of many quantitative/qualitative trait loci affecting phenotypic variation in traits associated with albinism, disease resistance, temperature tolerance, sex determination, embryonic development rate, spawning date, condition factor and growth. Unfortunately, the elucidation of the precise allelic variation and/or genes underlying phenotypic diversity has yet to be achieved in this species having low marker densities and lacking a whole genome reference sequence. Experimental designs which integrate segregation analyses with linkage disequilibrium (LD) approaches facilitate the discovery of genes affecting important traits. To date the extent of LD has been characterized for humans and several agriculturally important livestock species but not for rainbow trout.</p> <p>Results</p> <p>We observed that the level of LD between syntenic loci decayed rapidly at distances greater than 2 cM which is similar to observations of LD in other agriculturally important species including cattle, sheep, pigs and chickens. However, in some cases significant LD was also observed up to 50 cM. Our estimate of effective population size based on genome wide estimates of LD for the NCCCWA broodstock population was 145, indicating that this population will respond well to high selection intensity. However, the range of effective population size based on individual chromosomes was 75.51 - 203.35, possibly indicating that suites of genes on each chromosome are disproportionately under selection pressures.</p> <p>Conclusions</p> <p>Our results indicate that large numbers of markers, more than are currently available for this species, will be required to enable the use of genome-wide integrated mapping approaches aimed at identifying genes of interest in rainbow trout.</p

    Monetize this? Marketized-commons platforms, new opportunities and challenges for collective action

    Get PDF
    In this paper we argue that recent developments in peer-to-peer platforms, including those underpinned by distributed-ledger technology (or blockchains), represent a new model for organizing collective action, which we term the “marketized-commons” model. Drawing on social psychological and economic theory, we compare this concept to established modes of organizing collective action. We also consider the marketized-commons model in relation to other peer-to-peer economies. We consider why individuals might be motivated to create and use platforms underpinned by the marketized-commons model, as well as how it might be counterproductive for cooperation, collaboration, participation and social goals. Finally, we recommend implications for those interested in designing peer-to-peer platforms to support collective action. Ultimately, we argue that to develop effective platforms in this context designers need to look beyond the financial considerations of individual platform users. Rather, they also need a concern for social psychological principles and processes, specifically how groups work and operate in these settings
    corecore