29 research outputs found

    Seven decades of hydrogeomorphological changes in a near‐natural (Sense River) and a hydropower‐regulated (Sarine River) pre‐Alpine river floodplain in Western Switzerland

    Get PDF
    This is the peer reviewed version which has been published in final form at https://doi.org/10.1002/esp.5017 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre‐Alps, two hydropower‐regulated and one near‐natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre‐regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near‐natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≥ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps

    Major flood disturbance alters river ecosystem evolution

    No full text
    Floods, major formative drivers of channel and floodplain structure and associated riparian and in-stream communities, are increasing in intensity and magnitude with climate change in many regions of the world. However, predicting how floods will affect stream channels and their communities as climate changes is limited by a lack of long-term pre-flood baseline data sets across different organismal groups. Here we show salmon, macroinvertebrate and meiofauna communities, monitored for 30 years in a system evolving owing to glacier retreat, were modified significantly by a major rainfall event that caused substantial geomorphic change to the stream channel. Pink salmon, reduced to one-tenth of pre-flood spawner densities, recovered within two generations. Macroinvertebrate community structure was significantly different after the flood as some pioneer taxa, which had become locally extinct, recolonized whereas some later colonizers were eliminated. The trajectory of the macroinvertebrate succession was reset towards the community structure of 15 years earlier. Meiofaunal abundance recovered rapidly and richness increased post-flood with some previously unrecorded taxa colonizing. Biotic recovery was independent of geomorphological recovery. Markedly different responses according to the organismal group suggest caution is required when applying general aquatic ecosystem theories and concepts to predict flood events
    corecore