2 research outputs found

    Inclusion of biological knowledge in a Bayesian shrinkage model for joint estimation of SNP effects.

    Get PDF
    With the aim of improving detection of novel single-nucleotide polymorphisms (SNPs) in genetic association studies, we propose a method of including prior biological information in a Bayesian shrinkage model that jointly estimates SNP effects. We assume that the SNP effects follow a normal distribution centered at zero with variance controlled by a shrinkage hyperparameter. We use biological information to define the amount of shrinkage applied on the SNP effects distribution, so that the effects of SNPs with more biological support are less shrunk toward zero, thus being more likely detected. The performance of the method was tested in a simulation study (1,000 datasets, 500 subjects with ∼200 SNPs in 10 linkage disequilibrium (LD) blocks) using a continuous and a binary outcome. It was further tested in an empirical example on body mass index (continuous) and overweight (binary) in a dataset of 1,829 subjects and 2,614 SNPs from 30 blocks. Biological knowledge was retrieved using the bioinformatics tool Dintor, which queried various databases. The joint Bayesian model with inclusion of prior information outperformed the standard analysis: in the simulation study, the mean ranking of the true LD block was 2.8 for the Bayesian model versus 3.6 for the standard analysis of individual SNPs; in the empirical example, the mean ranking of the six true blocks was 8.5 versus 9.3 in the standard analysis. These results suggest that our method is more powerful than the standard analysis. We expect its performance to improve further as more biological information about SNPs becomes available

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    No full text
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. Funding: UK Research and Innovation and National Institute for Health Research
    corecore