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Abstract 

With the aim of improving detection of novel single-nucleotide polymorphisms (SNPs) in genetic 

association studies, we propose a method of including prior biological information in a Bayesian shrinkage 

model that jointly estimates SNP effects. We assume that the SNP effects follow a normal distribution 

centered at zero with variance controlled by a shrinkage hyperparameter. We use biological information to 

define the amount of shrinkage applied on the SNP effects distribution, so that the effects of SNPs with 

more biological support are less shrunk towards zero, thus being more likely detected. 

The performance of the method was tested in a simulation study (1000 datasets, 500 subjects with 

~200SNPs in 10 linkage disequilibrium (LD) blocks) using a continuous and a binary outcome. It was 

further tested in an empirical example on body mass index (continuous) and overweight (binary) in a dataset 

of 1,829 subjects and 2,614 SNPs from 30 blocks. Biological knowledge was retrieved using the 

bioinformatics tool Dintor which queried various databases. 

The joint Bayesian model with inclusion of prior information outperformed the standard analysis: in the 

simulation study, the mean ranking of the true LD block was 2.8 for the Bayesian model vs. 3.6 for the 

standard analysis of individual SNPs; in the empirical example, the mean ranking of the six true blocks was 

8.5 vs. 9.3 in the standard analysis. These results suggest that our method is more powerful than the standard 

analysis. We expect its performance to improve further as more biological information about SNPs becomes 

available. 
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Introduction 

Genome-wide association (GWA) studies have identified many single-nucleotide polymorphisms (SNPs) 

associated with complex diseases and traits (Visscher, Brown, McCarthy, & Yang, 2012). However, the 

estimated effect sizes of these variants are frequently small and, overall, the identified SNPs explain only a 

small proportion of the predicted heritability of most diseases (Manolio, 2010). 

In classical GWA analyses, SNP effects are estimated individually and their p-values are adjusted for 

multiple testing since thousands or millions variants are studied. SNPs are typically analyzed individually 

(hereafter referred to as ‘standard analysis’) because of the 𝑝 >> 𝑛 problem: the number of parameters, 𝑝, 

far exceeds the number of individuals, 𝑛, which precludes the joint analysis of all SNPs in a standard 

regression model. Notwithstanding this, for complex traits with many associated genetic variants, the 

simultaneous analysis of all SNPs would be more powerful and provide better estimates because it combines 

the information across multiple variants (Cho et al., 2010). A variety of penalization (or regularization) 

methods has been proposed to address the issue of having more variables than observations (Hastie, 

Tibshirani, & Friedman, 2009). These methods impose constrains on the regression coefficients by means 

of a penalized objective function subject to a tuning parameter that “shrinks” the coefficients towards zero 

while allowing their estimation. However, these methods are usually computationally intensive when 

applied to high dimensional settings, which is the case of GWA studies. 

Another way of improving the yield of genetic variants identified is to incorporate prior knowledge about 

the SNPs into the analysis of GWA studies (Cantor, Lange, & Sinsheimer, 2010). The rationale behind this 

method is that SNP selection can be further improved by giving more weight to SNPs that have a biological 

role, while penalizing SNPs with no apparent function. Bayesian approaches represent the obvious 

statistical choice for the inclusion of external information and it provides tremendous flexibility in the types 

of evidence that can be incorporated. Many Bayesian methods developed for GWA analysis emphasize that 

they allow the integration of prior information but few publications have focused on the practicalities of 

this problem. To our knowledge, the work performed so far has focused on including prior information 
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either at the level of the SNP effects (Fridley et al., 2010; Vannucci & Stingo, 2010; Stingo, Chen, Tadesse, 

& Vannucci, 2011; Spencer et al., 2016) or at the level of the SNP’s probability of association with the 

outcome (Lewinger, Conti, Baurley, Triche, & Thomas, 2007; Thompson et al., 2013). 

The advantages of the joint estimation of SNP effects and the inclusion of prior biological information can 

be combined by using the Bayesian counterparts of the frequentist regularization methods with informative 

priors to reflect available knowledge. Bayesian regularization methods have a hierarchical formulation that 

sets a prior distribution on the SNP effects and models the dispersion parameter of that distribution using 

hyperpriors that induce shrinkage (also known as shrinkage priors) (Gianola, 2013). Usually, uninformative 

shrinkage priors are used and the data defines the amount of shrinkage that is applied across all SNPs 

(Gianola, 2013). 

Here we propose a method to include prior biological information into a Bayesian model that jointly 

estimates SNP effects by using biological information to modulate shrinkage. We consider a model where 

the SNP effects follow a normal distribution and the variance is modelled by a shrinkage hyperprior 

(Gelman, 2006). The goal is to use shrinkage to constrain the variances of the effects of SNPs with little 

biological support so that their effect estimates are shrunk towards zero (no effect). In contrast, SNPs with 

a lot of biological support are assigned a different shrinkage parameter value so that the SNP effects are 

less constrained. This translates to the estimation of larger SNP effects and a higher likelihood of association 

with the outcome. 

To implement this approach of including biological information into a Bayesian model by modulating 

shrinkage, we first address the problem of understanding the behavior and performance of a Bayesian 

shrinkage model when differential shrinkage is applied. We then address the problem of translating 

biological information into differential shrinkage that will have an impact in SNP detection. Finally, we 

propose a measure to define the set of shrinkage parameter values that yield the best performance. The 

choice of the shrinkage parameter is a general problem in Bayesian shrinkage models, especially when it 

cannot be based on the data at hand unlike in maximum likelihood and Empirical Bayes approaches. It is 
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even more complex in the context of differential shrinkage because it implies defining more than one 

shrinkage parameter value. 

Our approach differs from the Bayesian Adaptive Lasso method (Leng, Tran, & Nott, 2010), which also 

considers variable-specific shrinkage. In the Bayesian Adaptive Lasso, the shrinkage parameters are chosen 

using empirical Bayes estimation by maximum likelihood or a hierarchical Bayes approach, where the 

shrinkage parameters are assigned a hyperprior distribution and estimated alongside the data. In our 

approach, the shrinkage parameters are defined based strictly on external information which is translated 

into a gradient of shrinkage. 

This approach also differs from other methods that include prior knowledge and estimate SNP effects. Here 

we use prior knowledge to create differential shrinkage and model the variance of the effects instead of 

modelling the SNP effects directly. This allows us to bypass the problem of modeling the direction of effect, 

which has been dealt before by using mixture models (Fridley et al., 2010) or by adding parameters to the 

model, such as vectors that indicate the direction of effect (Quintana et al., 2013). By modelling the variance 

of SNPs effects that are, a priori, centered at zero the direction of effect is strictly dependent on the data. 

This approach also simplifies the integration of external information as it avoids the need to specify the 

direction that each item of information will have on the SNP effect. 

The remainder of this work is structured as follows: we first conduct a simulation study to test our approach 

under different hypothetical scenarios of differential shrinkage and under SNP-specific shrinkage according 

to simulated prior knowledge, where prior knowledge was simulated under the assumption that the truly 

associated SNPs tend to have more prior support. This ensures that failure to improve SNP detection would 

be due to poor model performance and not due to lack of relevance of the information used. We further test 

the method using an empirical example on Body Mass Index (BMI) with real data from The European 

Community Respiratory Health Survey (ECRHS) (Burney, Luczynska, Chinn, & Jarvis, 1994). We create 

a dataset where we know which SNPs are truly associated with BMI and test the method after incorporating 

real biological information retrieved from various online repositories. 
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Materials and Methods 

Bayesian Model 

We considered an approach based on the model framework proposed by Yi et al. (Yi, Liu, Zhi, & Li, 2011), 

a family of Bayesian hierarchical Generalized Linear Models (BhGLM) with shrinkage priors that perform 

joint analysis of SNPs in a computationally efficient way through the application of the EM-IWLS 

algorithm (Yi & Ma, 2012). This is a modified version of the standard Iterative Weighted Least Squares 

(IWLS) algorithm (Green, 1984) that includes Expectation-Maximization (EM) steps (Dempster, Laird, & 

Rubin, 1977). It is based on the estimation of the marginal posterior mode and can very quickly run an 

analysis on thousands of SNPs (Yi & Ma, 2012). This is essential for our approach since our ultimate goal 

is to scale up to millions of SNPs as in GWA analyses. 

The BhGLM model framework is very flexible and encompasses different models with different priors. For 

this work, we considered a normally distributed, continuous trait 𝑌 and the following model: 

௜ݕ = 𝛼0 +∑ 𝛼௝ݔ௜௝௝ + 𝜀௜ 
where 𝛼0 is the intercept, 𝛼௝ is the effect of the ݆௧ℎ SNP, ݔ௜௝ is the genotype of the ݆௧ℎ SNP in the ݅௧ℎ subject 

and 𝜀௜ is the random error. The Bayesian hierarchical formulation of the model is the following: 

𝛼௝|𝜏𝛼𝑗2 ∼ 𝑁ሺ𝜇௝ , 𝜏𝛼𝑗2 ሻ 
𝜏𝛼𝑗2 |𝑠𝛼𝑗2 ∼ 𝐼𝑛𝑣 − 𝜒2ሺͳ, 𝑠𝛼𝑗2 ሻ 

where 𝜇௝ is the prior mean of the SNP effect, 𝜏𝛼𝑗2  is the variance of 𝛼௝ and 𝑠𝛼𝑗2  a scale hyperparameter. This 

formulation considers that 𝛼௝ follows a scale mixture of normal distributions with SNP-specific variance 𝜏𝛼𝑗2  (Yi & Ma, 2012) and corresponds to the hierarchical formulation of the Cauchy distribution for the SNP 

effects with location 𝜇௝ and scale 𝑠𝛼𝑗 . 
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We hypothesize that prior knowledge can be included at the level of the scale hyperparameter 𝑠𝛼𝑗2  by 

defining its value according to external biological information. The rational of the method is the following: 

the scale hyperparameter controls the variance of the SNP effect (𝜏𝛼𝑗2 ) and, consequently, a small 𝑠𝛼𝑗2  will 

be associated with smaller variances and estimates of the effect size, 𝛼௝, closer to the prior mean, 𝜇௝. 
Conversely, a larger 𝑠𝛼𝑗2  will lead to larger variances and estimates of 𝛼௝ that can deviate further from the 

mean according to support from the data. In our setting, we assume that the SNPs come from a scale-

mixture of normal distributions with prior mean centred at zero and set 𝜇௝ = Ͳ. We study the behavior of 

the model under different values of 𝑠𝛼𝑗2  informed by prior knowledge in both a simulation study and an 

empirical example where we know which SNPs are associated with the outcome. In all our analyses, we 

group the SNPs in linkage disequilibrium (LD) blocks. Our main focus is to detect independent genomic 

regions rather than individual SNPs because the detected SNPs are not necessarily the causal ones but, more 

likely, markers in LD with the causal variant.  

All analyses were performed using R statistical software version 3.2.2 (https://www.r-project.org/) and the 

freely available package BhGLM (http://www.ssg.uab.edu/bhglm/) which implements the EM-IWLS 

algorithm. Further details about the functions and specific parameters used can be found in the 

supplementary data (Text S2). 

 

Simulation study 

We simulated 1000 datasets each with 500 subjects, using the software GENOME (Liang, Zöllner, & 

Abecasis, 2007) to generate 10 independent LD blocks with ~20-30 SNPs each (~200-300 SNPs in total). 

After excluding SNPs with minor allele frequency lower than 5%, one SNP was randomly chosen to be the 

causal SNP and assigned an effect size 𝛼𝑐𝑎௨௦𝑎𝑙 = Ͳ.ͳͷ. This effect was used to generate a continuous trait 

Y, so that 𝑌~𝑁ሺ𝛼𝑐𝑎௨௦𝑎𝑙 ∙ 𝑆𝑁𝑃, ͳሻ. The effect size was chosen based on the results of the standard  

https://www.r-project.org/
http://www.ssg.uab.edu/bhglm/
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analysis, such that it was not so large that it ranked the causal region first in all the datasets, nor so small 

that it consistently ranked below the 50th percentile. 

The behavior of the model was first studied under three scenarios: 1) constant 𝑠𝛼𝑗2  for all SNPs, 2) higher 𝑠𝛼𝑗2  for only the SNPs in the true LD block, and 3) higher 𝑠𝛼𝑗2  for the SNPs in one randomly chosen false 

LD block with intermediate 𝑠𝛼𝑗2  for the SNPs in the true LD block. Scenario 2) aims to demonstrate the 

performance of the model under ideal conditions and works as a proof-of-concept (Supplementary Table 

1). Scenario 3) aims to demonstrate that the model is still able to detect the true SNPs even when they are 

not the ones whose effects are less shrunk towards zero, which is a possible real situation (Supplementary 

Table 2). In this scenario, one false LD block is randomly chosen and all its SNPs are assigned a higher 𝑠𝛼𝑗2  

than the SNPs in the true LD block. All other false SNPs are assigned a lower 𝑠𝛼𝑗2 . We set upper and lower 

bounds for 𝑠𝛼𝑗2  corresponding to the randomly chosen LD block and the other false LD blocks, respectively. 

We assign an intermediate value of 𝑠𝛼𝑗2  to the SNPs in the true LD block, calculated by averaging the 

predefined lower and upper bounds of 𝑠𝛼𝑗2 . 
Performance was assessed by the average ranking of the true LD block across all datasets, with the ranking 

of the LD block defined by the best ranking SNP in that block taking into account the Bayesian p-value.  

All results were compared with those of the standard analysis with SNPs ranked based on their frequentist 

p-values. 

One question that arises is how to define the most appropriate shrinkage/scale parameter. The shrinkage 

parameter controls the variance of the estimated SNP effects and, ideally, the best parameter will shrink 

towards zero the SNPs in the false LD blocks while minimally shrinking the SNPs in the true LD block. 

We hypothesize that a good set of shrinkage parameters will lead to a large ratio between the variance 

around zero of the SNP effects of the true LD block and the variance around zero of the SNP effects of the 

false LD blocks. Since, in practice, the true LD block is unknown we base the parameter selection on the 

ratio of the variance about zero of the SNP effects of the top LD block (1st out of 10) over the variance 
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about zero of the SNP effects of the remaining blocks. We refer to these measures as the variance ratio of 

the true block and the variance ratio of the top block, respectively. We test the usefulness of these measures 

by comparing the variance ratios obtained with several sets of shrinkage parameters with the performance 

of the model. 

 

Translation of prior knowledge into shrinkage 

To create a link between prior knowledge and shrinkage, we first simulated prior knowledge by randomly 

assigning to each LD block an integer between 0 and 10, where 0 corresponds to absence of prior support 

and 10 corresponds to the maximum prior support. All the SNPs in a LD block were assigned the block’s 

value of prior knowledge. The causal SNP was then sampled from the dataset using prior knowledge as 

frequency weights in a random drawing, so that SNPs with a value of prior knowledge of 10 would have 

more probability of being selected to be the causal SNP than SNPs with less prior knowledge. 

We translated prior knowledge into shrinkage by setting a range of values for 𝑠𝛼𝑗2 , with the lower bound 𝑠𝛼𝑗,బ2  corresponding to prior knowledge=0 and the higher bound 𝑠𝛼𝑗,భబ2  corresponding to prior knowledge=10. 

Intermediate values of prior knowledge were interpolated linearly in-between. 

We repeated the analyses using a binary outcome instead of a continuous one. In particular, we used our 

simulated datasets with a simulated a binary outcome to test model performance in the setting of a 

generalized linear model with a logit link function and a similar Bayesian hierarchical formulation. The 

details of the model and analyses can be found in the supplementary data (Text S1). 

 

Empirical example 

We tested our approach using an empirical example with data on Body Mass Index (BMI) from The 

European Community Respiratory Health Survey (ECRHS), a multicenter European study aimed at 

identifying  factors associated with the world-wide increase in asthma prevalence (Burney et al., 1994). We 
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chose BMI because it is a widely studied phenotype with many genetic variants identified and replicated in 

multiple studies (Locke et al., 2015). 

From the original ECRHS GWA study on 1,829 individuals and 2,588,592 SNPs, we constructed a subset 

with a smaller number of SNPs in order to reduce the computational time. This dataset included SNPs 

known to be associated with BMI (‘true’ SNPs) and randomly selected SNPs (‘false’ SNPs). The selection 

of ‘true SNPs’ was based on a recently published meta-analysis of GWA studies on BMI that identified 97 

significant loci and constitutes the largest meta-analysis of BMI so far (Locke et al., 2015). 

Using the data from ECRHS, we performed the standard regression analysis of the 97 SNPs along with all 

the SNPs in the same LD blocks (11,389 SNPs in total), and selected 6 SNPs using the following criteria: 

3 significant SNPs (rs7138803, p=0.001; rs11057405, p=0.036; rs758747, p=0.049), 2 SNPs with p-values 

close to 0.05 (rs6567160, p=0.066, rs7243357, p=0.070) and 1 SNP with a p-value close to 0.1 (rs1558902, 

p=0.116). Additionally, twenty-four SNPs were randomly chosen from the 2,588,592 SNPs available in the 

ECRHS dataset and were used as controls in the analysis (‘false’ SNPs). In both instances, the SNPs were 

chosen so that no two SNPs mapped to the same LD block. All 30 SNPs (6 true and 24 random SNPs) were 

mapped to their corresponding LD blocks using Pos2LDBlock, a tool that maps SNPs to LD blocks based 

on D’ (Taliun, Gamper, & Pattaro, 2014; Weichenberger et al., 2015). With this approach, we obtained a 

dataset of 2,614 SNPs and 1,829 individuals to which the model and our method were applied. In all 

analyses, both the outcome and the genotypes were standardized by subtracting the mean and diving by the 

standard deviation. 

 

Retrieval of prior biological knowledge 

We retrieved prior knowledge based on a set of 10 questions regarding biological characteristics of the 

SNPs (Figure 1) that have been previously associated with an increase in a SNPs probability of association 

with several outcomes (Minelli et al., 2013). All questions have binary ‘Yes’ or ‘No’ answer, corresponding 
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to a score of 1 or 0, respectively. The final amount of prior knowledge for each SNP was the sum of the 

scores obtained for the 10 questions. The prior knowledge was independent of the results of the meta-

analysis of GWA studies on BMI (Locke et al., 2015) used to define the ‘true SNPs’, which excludes the 

possibility of knowledge contamination. 

Most of the data retrieval was performed using the data integration framework ‘Dintor’, a bioinformatics 

tool suite that queries information from multiple online datasets and is designed for use in functional 

annotation of genomic and proteomic data (Weichenberger et al., 2015). Additionally, we obtained data 

from the following databases: Pfam Protein Families database (Finn et al., 2014), Mouse Genome 

Informatics (Eppig, Blake, Bult, Kadin, & Richardson, 2015) and Reactome (Croft et al., 2014; Milacic et 

al., 2012). Further details regarding the retrieval of prior information can be found in the supplementary 

data (Text S3). 

 

Translation of prior knowledge into shrinkage 

Similarly to the simulation study, we tested the performance of the model both when ignoring prior 

knowledge, therefore using only one shrinkage parameter value, and when incorporating prior knowledge, 

thus using different values of shrinkage parameters according to the level of prior support. We set the upper 

bound of shrinkage to correspond to the maximum score of prior knowledge obtained, and interpolated the 

shrinkage parameter values linearly in between. Performance of the model was evaluated based on the 

average ranking of the true LD blocks, with the ranking of the LD block defined by the best ranking SNP 

in that block, according to its Bayesian p-value. The variance ratio of the estimated effects of the top six 

blocks over the remaining blocks was also calculated to assess the accuracy of this measure in identifying 

the best set of parameters. We set the threshold at six because it corresponded to the real number of true 

LD blocks. These results were compared with the variance ratio of the true LD blocks over the false blocks 

and studied the association of these measures with model performance. 
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As for the simulation study, we repeated the analysis using a binary outcome, in this case, by dichotomizing 

BMI into normal (≤25kg/m2) vs. overweight/obese (>25kg/m2) and tested the performance of the model 

using our empirical dataset. Further details can be found in the supplementary data (Text S2). 

 

Results 

Simulation study 

Table 1 and Figure 2a summarize the results obtained with different shrinkage parameter values without 

inclusion of prior knowledge, that is, assigning the same shrinkage parameter to all the SNPs in each dataset 

(scenario 1, constant 𝑠𝛼𝑗2  for all SNPs). The average ranking of true LD block obtained using different 

shrinkage parameters is compared with the standard analysis where the average ranking was ~3.6. Models 

1.1 and 1.2 mimic the scenario of no shrinkage, since assigning a large scale parameter will result in large 

variances of the SNP effects. The true scenario of no shrinkage corresponds to 𝑠𝛼𝑗2 = ∞ which is the same 

as fitting a standard linear model with all the SNPs as predictors and, as expected, models 1.1 to 1.5 show 

little or no improvement comparing to random guessing. However, as 𝑠𝛼𝑗2  decreases and more shrinkage is 

applied, the ranking of the true LD block improves until it is comparable with the standard analysis in 

models 1.8 to 1.11. This suggests that equally shrinking all the SNP effects does not produce better results 

than the standard analysis in this particular scenario. 

In all simulated datasets, the effect size for the causal SNP was set to 0.15 and, given the properties of the 

Cauchy distribution, setting 𝑠𝛼𝑗 = Ͳ.ͳ would be a sensible value to estimate SNP coefficients in the range ±Ͳ.Ͷ. Therefore, in order to detect SNPs with coefficients ~0.15 such as the causal SNP and the SNPs in 

the same LD block, a sensible value of 𝑠𝛼𝑗2  
is Ͳ.ͳ2 = Ͳ.Ͳͳ. Noticeably, in model 1.7 (Table 1), we observe 

the first improvement in performance of the model as 𝑠𝛼𝑗2  
decreases. A stronger shrinkage as in model 1.8, 

produces better results as it induces more shrinkage on the false SNPs while maintaining a good range to 
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detect the true SNPs (±Ͳ.ͲͶ). 

We calculated the variance ratios of the SNP effects of the top and true LD blocks to test the hypothesis 

that they predict model performance and can be used to determine the best set of shrinkage parameters in a 

real dataset. An increase in the variance ratio for the top block is associated with an improvement in 

performance of the model with the best ranking being achieved for model 8 (Table 1, 𝑠𝛼𝑗2 = Ͳ.ͲͲͳ). This 

measure also remains constant when even stronger shrinkage is applied and is associated with stabilization 

in performance (Table 1, models 1.9 to 1.11). The same pattern of variation is observed for the variance 

ratio of the true blocks, which suggests that both these measures are associated with performance and that 

the variance ratio of the top block is a good proxy for the variance ratio of the true block (Figure 2a). 

The performance of the model was also studied under the scenarios of higher 𝑠𝛼𝑗2  for only the SNPs in the 

true LD block (scenario 2) and higher 𝑠𝛼𝑗2  for the SNPs in one randomly chosen false LD block with 

intermediate 𝑠𝛼𝑗2  for the SNPs in the true LD block (scenario 3). In scenario 2, our approach markedly 

improved upon the standard analysis with a mean ranking of the true LD block of 1 in most of the models 

tested (Supplementary Table 1). Scenario 3 also showed improved performance with an average ranking of 

~1.5 in the best model (vs. ~3.6 in the standard analysis, Supplementary Table 2). This later result suggests 

that our approach is able to detect the true LD block in a situation where it is not the block with more prior 

support, which is a likely case in a real study. 

 

Translation of prior knowledge into shrinkage 

Table 2 shows the shrinkage parameter values in terms of the lower bound for 𝑠𝛼𝑗2  (prior support=0) and the 

upper bound corresponding to support=10. Intermediate values were obtained by linear interpolation. These 

results suggest that the model can outperform the standard analysis when differential shrinkage is applied. 

Models 2.4, 2.8 and 2.12 all show a significant improvement with an average ranking of the true block of 

~2.8 vs. ~3.6 in the standard approach (Table 2). All these models have the same upper bound of shrinkage 
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(𝑠𝛼𝑗2 = Ͳ.ͲͲͳ) while the lower bound ranges from 104 to 106. Even though there is a marginal 

improvement in average ranking with a decreasing lower bound, the results suggest that, in all these models, 

the SNP effects of the blocks with little prior knowledge are being effectively shrunk towards zero. 

Interestingly, the upper bound for these models is the same as the largest 𝑠𝛼𝑗2  (0.001) that yielded the best 

results in the scenario where shrinkage is constant for all SNPs (Table 1, model 1.8). 

The analysis of the variance ratios for the top and true LD blocks shows an even stronger association 

between performance and these measures, with local maxima corresponding to the three best performing 

models (Figure 2b) and the absolute maximum corresponding to the best performing model overall (Table 

2, model 2.12). The same pattern of variation is again observed between the variance ratio of the top and 

the true LD block which suggested that the variance ratio of the top block is a good proxy when differential 

shrinkage is applied. 

The results of the simulation study using a binary outcome yielded very similar results to those obtained 

using a continuous outcome. The model did not improve upon the standard analysis when no differential 

shrinkage was applied with the model matching the performance of the standard SNP analysis when 𝒔𝜶𝒋૛ <
૙. ૙૚ (Models S3.8-S3.11, Supplementary Table 3). When prior information was included as differential 

shrinkage, the model was able to improve the ranking of the true LD blocks in comparison with the standard 

analysis: the best mean ranking of the true LD block obtained was 2.9 for the Bayesian model vs. 3.6 for 

the standard analysis (model S4.3, Supplementary Table 4). Additionally, the best models corresponded to 

maxima of the variance ratios for the top block and true blocks (Supplementary Table 3), which further 

supports the ability of these measures to identify the best set of parameters to use. 

 

Empirical example 

The retrieval of prior information showed that most SNPs did not contain any prior biological support 

(n=945), 873 SNPs had a prior knowledge score of 1 and 701, 111 and 14 had score of 2, 3 and 4, 
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respectively, with a score of 4 being the maximum amount of prior knowledge obtained. Therefore, the 

upper bound of shrinkage was set to correspond to a score of 4 in this example. 

Similarly to the simulation study, the model can match but not outperform the standard analysis in the 

scenario of constant shrinkage when the model is applied to a set of real data with real prior biological 

information. (Table 3). In particular, models 3.9 to 3.12 (Table 3) show the same average ranking for the 

true SNPs as the standard analysis (~9.3). Model 3.8 shows a better, but not substantial, result with an 

average of ~9.2. 

To validate the variance ratio of the top blocks as a measure to determine the best set of shrinkage 

parameters, we calculated the variance ratio of the top six blocks for both scenarios of constant and 

differential shrinkage and compared with the variance ratio of the six true LD blocks and the associated 

model performance. The pattern of variation of these measures is shown in Figure 3a. The same relationship 

between the variance ratios and performance is observed, with maxima of both types of variance ratios 

being associated with the best performance of the model (Table 3, models 3.8 to 3.11). It can be noted that 

we obtain very high variance ratios in models 3.1 and 3.2, which are higher than the ratios we obtain when 

stronger shrinkage is applied in models 3.9 to 3.11 (Table 3). However, the values used for the shrinkage 

parameter in models 3.1 and 3.2 (𝑠𝛼𝑗2 = ͳͲͲ,ͲͲͲ and ͳͲ,ͲͲͲ, respectively) correspond to scenarios of 

almost no shrinkage which are similar to performing a standard linear regression in a model with too many 

covariates, as previously discussed. 

For the scenario of differential shrinkage (Figure 3b), the variance ratio of both the top LD blocks and the 

true LD blocks was strongly related with performance, with the three local maxima corresponding to the 

three best performing models (Table 4, models 4.4, 4.8 and 4.12). The variance ratio of the true blocks 

achieves local maxima for similar models (models 4.3, 4.7 and 4.11) but not for the top performing ones. 

Additionally, the variance ratios for the top blocks show much higher maxima, which supports the idea that 

this is not only a good proxy but is a better measure than the variance ratio of the true blocks (Figure 3b). 
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Models 4.4, 4.8 and 4.12 were the top performing models with model 4 ranking the LD blocks, on average, 

one position higher than the standard analysis (~8.5 and ~9.3, respectively) and corresponding to the 

absolute maximum of the variance ratios for the top LD blocks. The shrinkage parameters of these models 

also correspond to the best performing parameter pairs in our simulation study with model 4.6 

corresponding to model 2.4, the third best performing model in our simulations. 

Similarly to the simulation study, the results obtained using a binary outcome showed improvement upon 

the standard anaylsis when prior information is included in the model. In the scenario of constant shrinkage 

applied to all SNPs (no inclusion of prior information) there was no improvement in the average ranking of 

the true LD block comparing to the standard analysis (Supplementary Table 5). We observed that, in this 

case, the model does not converge when 𝑠𝛼𝑗2 ൒ ͳͲ,ͲͲͲ (models S.51 and S.52, Supplementary Table 5), 

which are approximations to the situation of no shrinkage. When prior information is included, we observed 

an improvement in the mean ranking of the 6 true blocks from ~8.2 in the standard SNP analysis to ~7.3 in 

the Bayesian model (model S6.13, Supplementary Table 6). The maximum values of the variance ratios of 

the top block and true blocks were again able to identify the best performing models (Supplementary Tables 

5 and 6). 

These results, alongside their simulation study counterparts, suggest that our approach is also applicable to 

a binary outcome; the margin of improvement is slightly lesser than with a continuous outcome, probably 

due to the loss of statistical power associated with binary outcomes. 

To illustrate the efficiency of the algorithm, we obtained the computational time for each model and the 

overall computational time for both the simulated and empirical datasets. All analyses were run on an Intel® 

Core™ i7-4770 CPU (quad-core) with 3.40GHz. The computational time varied from 0.06 to 0.30 seconds 

for each individual simulated dataset. For the empirical example with 1,828 subjects and 2,614 SNPs, the 

computational time varied between 3.12 and 10.26 seconds to analyse using the different shrinkage 

parameter combinations. 
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Discussion 

In this study, we use a Bayesian shrinkage model that jointly estimates SNP effects and induce SNP-specific 

shrinkage as a means to include external biological information. We show that differential SNP-specific 

shrinkage was able to outperform the standard analysis in detecting the LD blocks that contained the true 

SNPs. This contrasts with the fact that, without differential shrinkage, the model cannot outperform the 

standard analysis and performs poorly when little shrinkage is applied. When no shrinkage is applied, the 

model corresponds to a standard linear model with estimation performed by the least squares method, which 

is known to perform poorly in the presence of a large number of strongly correlated SNPs. 

The translation of different levels of biological knowledge into shrinkage was able to improve the ranking 

of the LD block that contains the causal SNP both in the simulated and empirical examples. This suggests 

that this approach is useful in increasing the yield of detected SNPs. In the simulation study, we did not use 

real biological knowledge but rather use simulated knowledge that increases the chance of a SNPs being 

selected to be a true SNP. The improved performance observed demonstrated that our approach works when 

biological knowledge is relevant. In the empirical example, we use real biological information that has been 

suggested to increase the probability of a SNP being associated with an outcome (Minelli et al., 2013). In 

this case, the improved performance observed shows not only that the approach works, but also confirms 

that the type of prior knowledge used is relevant. It is important to note that the prior knowledge considered 

in this paper refers to biological characteristics of the SNPs, independently from whether the SNP has been 

already discovered in previous genetic association studies. Therefore, our approach will not be biased 

towards replicating previous findings and should work as well with novel SNP discoveries. Additionally, 

the performance of this approach is expected to improve as more information about the SNPs becomes 

available. 

The model framework used in this study was previously applied to genetic association studies with the 

purpose of increasing power to detect rare variants (Yi et al., 2011). The SNPs were grouped in four groups 

according to MAF (frequent vs. rare variants) and whether the SNP was synonymous or non-synonymous. 



18 

 

The authors split shrinkage into three categories: weak shrinkage (𝑠𝛼𝑗2 > ͳ), moderate shrinkage (Ͳ.ʹ ൑𝑠𝛼𝑗2 ൑ ͳ) and strong shrinkage (𝑠𝛼𝑗2 < Ͳ.ʹ) and apply moderate shrinkage to their data. In our study, we find 

that much strong shrinkage is required to obtain optimal results with values significantly smaller than the 

upper bound of strong shrinkage (e.g. 𝑠𝛼𝑗2 ൑ Ͳ.ͲͲͳ). Yi et al. (2011) use rare variants in the model while, 

in our study, we exclude all variants with a MAF<0.1. The authors center the mean of the SNP effects of 

the rare variants at 1 or at a functional score between 0.16 and 1. As expected, this inflates the estimated 

SNP effect and less shrinkage is required to detect these variants. Yi et al. also applied a new model where 

group effects are estimated along with the SNP effects. The overall SNP effect is the product of the 

estimated group effect with the estimated SNP effect, and this can also affect the value of the optimal 

shrinkage parameter. Although we are interested in genomic regions defined by LD, a form of group 

structure, we chose not to use this particular model setting due to its high false positive rate (personal 

communication with the author; the R function that implemented this scenario was removed from the 

BhGLM package when it was updated). 

An important problem that is common to all shrinkage methods, Bayesian or not, is the selection of the best 

shrinkage parameter. In classical shrinkage methods, the best shrinkage parameter is usually estimated 

through cross-validation (Hastie et al., 2009). In the Bayesian framework, the shrinkage parameter is either 

estimated using the empirical Bayes method by marginal maximum likelihood or by assigning a hyperprior 

distribution to the parameter and estimating it along with the other model parameters (Park & Casella, 

2008). We use a different approach to determine the best parameters by calculating the ratio of the variance 

of the estimated SNP effects around 0 in the top blocks over the remaining blocks. This is based on two 

assumptions: 1) the true LD blocks tend to have more prior knowledge and 2) the model with the best set 

of parameters will rank these blocks high. Our results show that the maximization of the estimated SNP 

effect variance ratio of the top ranking LD blocks over the remaining blocks is a good measure to define 

the best set of shrinkage parameters, particularly when differential shrinkage is applied. This measure 

allows the practical implementation and application to real examples with thousands of SNPs requiring 
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user-input only for the expected number of true LD blocks. For the calculation of the variance ratio, we 

used the first top-ranking block in each of the simulated datasets and the six top-ranking blocks in the 

empirical dataset, as these were the real number of true blocks in each example and it was known a priori. 

In a real dataset, the user has to choose the number of blocks that are expected to be true to decide which 

blocks are the ‘top blocks’ and calculate the variance ratio. 

An alternative to maximizing the variance ratio of the top ranking LD blocks to determine the best set of 

shrinkage parameters is to use a simulation approach where some blocks would be randomly chosen to be 

the ‘true blocks’ and used to simulate an outcome similar to the real outcome being studied assuming certain 

a SNP effect. Performance would be evaluated for different shrinkage parameter values as performed in 

this study. The model would then run for several rounds with different ‘true blocks’ and different simulated 

outcomes. The shrinkage parameters would be determined by the best performing set in all rounds of 

simulation. This approach, however, is much more computationally demanding than testing different 

shrinkage parameter values and choosing the values that maximize the variance ratio of the top blocks. 

While we predict that this approach could be applicable to our datasets, our goal is to apply our method to 

large datasets with many thousands of SNPs and, ultimately, to GWA studies for which this simulation-

based approach would become impractical.  

Our method illustrates that it is possible to include prior biological knowledge in a Bayesian joint SNP 

analysis by modulating shrinkage. Nonetheless, it is not necessarily exclusive to this particular setting. It is 

potentially applicable to other high dimensional settings where Bayesian shrinkage methods are required 

and prior information is available, including models that perform variable selection. A recent study applied 

a similar hierarchical shrinkage model that performs variable selection to study SNP associated with 

expression Quantitative Trait loci (eQTLs), that is SNPs associated with changes in gene expression 

(Boggis et al., 2016). External biological information was used by grouping SNPs into functional groups 

and calculating a functional significance score. This score was incorporated in the model via the expectation 

of the marginal prior variance of the SNP effects, which is similar to our approach. The authors show that 
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the inclusion of prior information was able to increase SNP detection and that the model outperformed other 

similar Bayesian models that did not include external information. Even though this is work is applied to 

eQTLs, it illustrates that the modulation of shrinkage is a feasible approach to include external information 

in a Bayesian model like we advocate. 

The assessment of the effect of prior knowledge in shrinkage has two different aspects: first, the effect of 

the modulation of the shrinkage parameter value per se, which is independent of prior knowledge and 

second, the translation of prior knowledge into differential shrinkage. In this manuscript, we explored both 

of these aspect but further work is required to fully understand the impact that prior information can have 

in this approach and to optimize its translation into shrinkage. Improvements in both these aspects will 

make better use of external information and are expected to further improve SNP detection. 
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Legends 

Figure 1. List of external biological information questions included in the statistical model. *All genes 

within ±5kb of the SNP are considered. 

 

Figure 2. Variance ratios for the estimated SNP effects in the simulation study: a. Constant shrinkage 

applied to all SNPs with the shrinkage parameter values represented on the x-axis; b. Range of shrinkage 

parameters with lower and upper bounds to shrinkage represented on the x-axis. The variance ratios of the 

top and true blocks are represented by the continuous black and light gray lines, respectively. The average 

ranking of the true block is represented by the dotted line with squares and its scale is on the right-hand 

side y-axis. 

 

Figure 3. Variance ratios for the estimated SNP effects in the simulation study: a. Constant shrinkage 

applied to all SNPs with the scale parameter values represented on the x-axis; b. Range of shrinkage 

parameters with lower and upper bounds to shrinkage represented on the x-axis. The variance ratios of the 

top and true blocks are represented by the continuous black and light gray lines, respectively. The average 

ranking of the true block is represented by the dotted line with squares and its scale is on the right-hand 

side y-axis. 
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Tables 

Table 1. Average ranking of the true LD block in the simulation study with a continuous 

outcome. Results are presented for the standard SNP analysis and Bayesian model with constant 

shrinkage across SNPs. Variance ratios for the top block and for the true block are also presented 

and the best performance is reached when the variance ratio is maximized. 

Constant 𝒔𝜶𝒋𝟐  for all the SNPs 

Model Scale (𝒔𝜶𝒋𝟐 ) 
Variance ratio 

Average Ranking 
Top block True block 

Standard analysis - 2.201 1.501 3.624 

1.1 105 2.740 1.147 5.210 

1.2 104 2.740 1.147 5.210 

1.3 5 2.574 1.135 5.209 

1.4 2.5 2.351 1.118 5.231 

1.5 1 2.021 1.108 5.183 

1.6 0.1 2.361 1.374 4.865 

1.7 0.01 2.424 1.755 3.673 

1.8 0.001 2.455 1.814 3.623 

1.9 10-4 2.456 1.814 3.624 

1.10 10-5 2.456 1.813 3.624 

1.11 10-6 2.456 1.813 3.624 

 

 

Table 2. Average ranking of the true LD block in the simulation study with a continuous outcome.  

Results are presented for the standard SNP analysis and Bayesian model with constant shrinkage across 

SNPs. Variance ratios for the top block and for the true block are also presented and the best performance 

is reached when the variance ratios are maximized. 

Differential 𝒔𝜶𝒋𝟐  according to prior information 

Model 

Scale (𝒔𝜶𝒋𝟐 ) Variance ratio 
Average 

Ranking prior  

support = 0 

prior 

support = 10 
Top block 

True 

block 

Standard analysis - - 2.201 1.501 3.624 

2.1 10-4 1 2.463 1.189 4.858 

2.2 10-4 0.1 2.629 1.350 4.739 

2.3 10-4 0.01 4.571 2.305 3.482 

2.4 10-4 0.001 4.723 2.654 2.835 

2.5 10-5 1 2.463 1.189 4.857 

2.6 10-5 0.1 2.627 1.351 4.737 

2.7 10-5 0.01 4.599 2.320 3.471 

2.8 10-5 0.001 5.111 2.726 2.806 

2.9 10-5 10-4 2.608 1.820 3.366 

2.10 10-6 0.1 2.627 1.351 4.737 

2.11 10-6 0.01 4.609 2.320 3.472 

2 12 10-6 0.001 5.140 2.733 2.802 

2 13 10-6 10-4 2.605 1.827 3.361 
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Table 3. Average ranking of the true LD block in the empirical example with ECRHS 

data and BMI as the outcome. Results are presented for the standard SNP analysis and 

Bayesian model with constant shrinkage across SNPs. Variance ratios for the top six 

blocks and for the true blocks are also presented and the best performance is reached 

when the variance ratio is maximized. 

Constant 𝒔𝜶𝒋𝟐  for all the SNPs 

Model Scale (𝒔𝜶𝒋𝟐 ) 
Variance ratio 

Average 

Ranking 
Top 6 

blocks 

True blocks 

Standard analysis - 4.527 2.471 9.333 

3.1 105 5.220 2.971 14.500 

3.2 104 7.194 2.977 14.833 

3.3 5 2.208 0.399 17.000 

3.4 2.5 2.512 0.748 15.500 

3.5 1 2.301 1.137 11.333 

3.6 0.1 1.305 1.662 10.500 

3.7 0.01 2.508 2.147 12.500 

3.8 0.001 4.531 2.450 9.167 

3.9 10-4 4.517 2.466 9.333 

3.10 10-5 4.514 2.465 9.333 

3.11 10-6 4.514 2.465 9.333 

 

 

 
Table 4. Average ranking of the true LD blocks in the empirical example with ECRHS data and BMI 

as the outcome. Results are presented for the standard SNP analysis and Bayesian model when 

differential shrinkage is applied, with the lower and upper bounds for the shrinkage parameter values 

reported in columns 2 and 3, respectively. Variance ratios for the top six blocks and for the true 

blocks are also presented and the best performance is reached when the variance ratio is maximized. 

Differential 𝒔𝜶𝒋𝟐  according to prior information 

Model 

Scale (𝒔𝜶𝒋𝟐 ) Variance ratio 
Average 

Ranking prior  

support = 0 

prior 

support = 4 

Top 6 

blocks 

True 

blocks 

Standard analysis - - 4.527 2.471 9.333 

4.1 10-4 1 2.442 2.060 10.833 

4.2 10-4 0.1 4.049 2.355 9.167 

4.3 10-4 0.01 7.259 2.927 8.833 

4.4 10-4 0.001 8.803 2.226 8.500 

4.5 10-5 1 2.442 2.060 10.833 

4.6 10-5 0.1 4.055 2.357 9.167 

4.7 10-5 0.01 7.343 2.947 8.833 

4.8 10-5 0.001 9.894 2.280 8.667 

4.9 10-5 10-4 5.006 2.428 9.500 

4.10 10-6 0.1 4.056 2.357 9.167 

4.11 10-6 0.01 7.351 2.948 8.833 

4.12 10-6 0.001 9.988 2.288 8.667 

4.13 10-6 10-4 4.903 2.454 9.500 

 

 

 



1 

 

Figures 
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Questions on prior biological information 

1. SNP in a transcribed but not translated region? 

2. SNP in a translated region but does not change the amino acid? 

3. SNP changes the amino acid but not in functional protein domain? 

4. SNP in a functional protein domain? 

5. SNP in a regulatory region which is not transcribed? 

6. SNP in a transcribed regulatory region? 

7. SNP in a genomic region evolutionary conserved in vertebrates? 

8. SNP in a gene (±5kb*) that has been associated with the same/closely related phenotype 

in functional models (animal or in vitro studies)? 

9. SNP in a gene (±5kb*) which is highly expressed in a tissue relevant to the phenotype? 

10. SNP in a gene (±5kb*) which shows gene/protein interactions relevant to the 

phenotype? 
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Text S1. Statistical Analysis using the BhGLM package 

We used the function 𝑏𝑔݈݉ሺሻ from the BhGLM package (http://www.ssg.uab.edu/bhglm/) and assigned 

different values to the function parameter prior.scale which corresponds to 𝑠𝛼𝑗ଶ . The other function 

parameters were set as follows:  

- prior=‘t’, indicates the hierarchical formulation of the model. 

- prior.mean=0, prior mean of the SNP effects, 𝜇௝ = Ͳ. 

- mean.update=FALSE, indicates that the prior mean is not updated at each iteration of the 

algorithm. 

- scale.update=FALSE, indicates that 𝑠𝛼𝑗ଶ  is not updated at each iteration of the model. It is fixed 

according to the biological information. 

The group parameter was set so that each LD block constituted one group. This allows the algorithm 

to update the 𝛼௝ parameters by group, which is more efficient and reduces computational time. The 

remaining parameters were set to default. 

 

 

Text S2. Application of the approach to a binary outcome 

Methods 

Our approach was further tested in the scenario of a binary outcome, a type of outcome which is 

frequently the focus of genetic association studies. In this example, we consider a binomially distributed 

trait 𝑌 and use the following generalized linear model with a logit link function: 

𝜂௜ = 𝑔݋݈ ( ௜ͳ݌ − (௜݌ = 𝛼଴ + ∑ 𝛼௝𝑥௜௝௝ + 𝜀௜ 
where 𝜂௜ is the linear predictor, ݌௜ is the probability of having the trait 𝑌, 𝛼଴ is the intercept, 𝛼௝ is the 

effect of the ݆௧ℎ SNP, 𝑥௜௝ is the genotype of the ݆௧ℎ SNP in the ݅௧ℎ subject and 𝜀௜ is the random error. 

The Bayesian hierarchical formulation of the model is the following: 

𝛼௝|𝜏𝛼𝑗ଶ ∼ 𝑁ሺ𝜇௝ , 𝜏𝛼𝑗ଶ ሻ 

http://www.ssg.uab.edu/bhglm/


3 

 

𝜏𝛼𝑗ଶ |𝑠𝛼𝑗ଶ ∼ 𝑣݊ܫ − 𝜒ଶሺͶ, 𝑠𝛼𝑗ଶ ሻ 

This hierarchical formulation is similar to the model used for the continuous outcome except that the 

scaled-inverse 𝜒ଶ distribution is slightly more informative with 4 degrees of freedom, to avoid extreme 

variance estimates. 

Similarly to the continuous outcome, the performance of the model was assessed in a simulation study 

and in an empirical example. In both cases, the approach was tested under the scenario of constant 

shrinkage (no inclusion of prior information) and under the scenario of differential shrinkage based on 

prior information. Performance was assessed by the average ranking of the true LD block across the 

datasets, with the ranking of the LD block defined by the best ranking SNP in that block based on the 

Bayesian p-value.  All results were compared to those of the standard SNP analysis with SNPs ranked 

based on their frequentist p-values. We also calculated the variance ratios for the top block and for the 

true block (top 6 blocks and true blocks in the empirical example) to assess the usefulness of these 

measures in the setting of a binary outcome. 

 

Simulation study 

We used the same simulated datasets derived using the software GENOME (Liang, Zöllner, & 

Abecasis, 2007) – 1000 datasets with 500 subjects, ~200-300 SNPs per dataset divided in 10 LD blocks. 

One SNP was randomly chosen to be the true SNP and assigned an effect size 𝛼𝑐𝑎௨௦𝑎𝑙 = Ͳ.͵Ͳ. This 

effect was used to generate a continuous trait H, so that ܪ~𝐵݅݊ሺͷͲͲ, ݌ ሻ, where݌ = ଵଵ+exp⁡ሺ−𝛼𝑐𝑎𝑢𝑠𝑎𝑙∙𝑆𝑁𝑃ሻ. 
The effect size was chosen based on the results of the standard SNP analysis and aimed to match the 

same average ranking obtained for the continuous outcome (Table 1, main manuscript). 

 

Empirical example 

We used the same dataset from ECRHS (Burney, et al., 1994) that we derived to test our approach with 

BMI as a continuous outcome and considered the same set of 6 true SNPs in 6 separate LD blocks out 
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of a total of 30 blocks. BMI was dichotomized as ≤25 vs. >25kg/m2 (normal vs. overweight/obese) with 

557 subjects in the overweight/obese category (n=1,829 subjects). 

 

 

Text S3. Retrieval of prior biological information 

Data retrieval was performed mainly using a local installation of the data integration framework 

‘Dintor’, a bioinformatics tool suite that queries information from multiple online datasets and is 

designed for use in GWA and next-generation sequencing studies (Weichenberger et al., 2015). It 

includes 35 independent modules for retrieving and manipulating data, and performs operations such 

as SNP and gene mapping to genomic coordinates, integration of LD block information, conversion of 

gene and protein identifiers, orthology annotation and access to regulatory regions. Dintor can be 

accessed through an online GUI, however we have chosen to use the UNIX command line interface, 

which greatly facilitates data integration into our modelling pipeline.  

Alongside Dintor, other databases/tools used were: Pfam Protein Families database (Finn et al., 2014, 

http://pfam.xfam.org) for questions 3 and 4, Mouse Genome Informatics (Eppig et al., 2015, 

http://www.informatics.jax.org) for question 8 and Reactome (Croft et al., 2014; Milacic et al., 2012, 

http://www.reactome.org) for question 10. The answers to the 10 questions were obtained in a semi-

automatic way, as data from Pfam, Mouse Genome Informatics and Reactome need to be manually 

retrieved. 

 

 

  

http://pfam.xfam.org/
http://www.informatics.jax.org/
http://www.reactome.org/
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Supplementary Tables 

 

Supplementary Table 1. Average ranking of the true LD block in the setting where the true LD block is 

assigned a larger 𝑠𝛼𝑗ଶ  than the false blocks. 

Higher 𝒔𝜶𝒋𝟐  for all the SNPs in the true LD block 

Model 

Scale (𝒔𝜶𝒋𝟐 ) Variance ratio 

Average 

Ranking 
prior  

support 

= 0 

prior  

support 

= 10 

Top block True block 

Standard analysis - - 2.201 1.501 3.624 
S1.1 10-4 1 8293409736.738 8293409736.738 1.000 
S1.2 10-4 0.1 519970188.609 519970188.609 1.000 
S1.3 10-4 0.01 1263435.331 1263435.331 1.000 
S1.4 10-4 0.001 316.323 316.362 1.001 
S1.5 10-5 1 17608947561.657 17608947561.657 1.000 
S1.6 10-5 0.1 1104024286.997 1104024286.997 1.000 
S1.7 10-5 0.01 2682582.041 2682582.041 1.000 
S1.8 10-5 0.001 671.719 671.719 1.000 
S1.9 10-5 10-4 3.765 3.851 2.484 

S1.10 10-6 0.1 1104024286.997 1104024286.997 1.000 
S1.11 10-6 0.01 2682582.041 2682582.041 1.000 

S1.12 10-6 0.001 671.719 671.719 1.000 

S1.13 10-6 10-4 3.765 3.851 2.484 

 

 

Supplementary Table 2. Average ranking of the true LD block in the setting where one false LD block has 

more prior knowledge than the true LD block. All the SNPs in one false LD block were randomly assigned a 

large 𝑠𝛼𝑗ଶ , corresponding to maximum prior knowledge, and the SNPs in the true LD block were assigned an 

intermediate 𝑠𝛼𝑗ଶ  corresponding to an intermediate prior knowledge score of 5. The remaining false SNPs were 

assigned a smaller 𝑠𝛼𝑗ଶ  corresponding to absence of prior information. 

Intermediate 𝒔𝜶𝒋𝟐  for all the SNPs in the true LD block with high 𝒔𝜶𝒋𝟐  for the SNPs in one false LD block 

Model 

 Scale (𝒔𝜶𝒋𝟐 ) Variance ratio 

Average 

Ranking 

prior  

support 

= 0 

True LD 

block - prior  

support 

= 5 

False LD 

block* - prior  

support 

= 10 

Top block 
True 

block 

Standard analysis - - - 2.201 1.501 3.624 
S2.1 10-4 0.5 1 22.882 6.842 1.530 
S2.2 10-4 0.05 0.1 38.391 3.258 1.630 
S2.3 10-4 0.005 0.01 119.026 1.670 1.882 
S2.4 10-4 5.510-4 0.001 43.425 3.292 1.836 
S2.5 10-5 0.5 1 24.762 6.544 1.540 
S2.6 10-5 0.05 0.1 39.070 3.169 1.645 
S2.7 10-5 0.005 0.01 124.682 1.665 1.876 
S2.8 10-5 5.510-4 0.001 68.867 2.722 1.867 
S2.9 10-5 5.510-5 10-4 18.101 3.110 3.003 
S2.10 10-6 0.05 0.1 39.738 3.162 1.638 
S2.11 10-6 0.005 0.01 125.424 1.522 1.902 

S2.12 10-6 5.510-4 0.001 62.545 2.714 1.862 

S2.13 10-6 5.510-5 10-4 17.939 2.944 3.094 

*Randomly chosen false LD block to which more prior knowledge was assigned. 
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Supplementary Table 3. Average ranking of the true LD block in the simulation study 

with a binary outcome. Results are presented for the standard SNP analysis and 

Bayesian model with constant shrinkage across SNPs. Variance ratios for the top block 

and for the true block are also presented and the best performance is reached when the 

variance ratio is maximized. 

Constant 𝒔𝜶𝒋𝟐  for all the SNPs 

Model Scale (𝒔𝜶𝒋𝟐 ) 
Variance ratio 

Average Ranking 
Top block True block 

Standard analysis - 2.447 1.716 3.765 

S3.1 105 2.779 1.232 5.357 

S3.2 104 2.779 1.232 5.357 

S3.3 5 2.308 1.127 5.341 

S3.4 2.5 2.059 1.101 5.322 

S3.5 1 1.776 1.113 5.246 

S3.6 0.1 1.943 1.368 4.528 

S3.7 0.01 2.371 1.706 3.773 

S3.8 0.001 2.948 1.709 3.779 

S3.9 10-4 14.387 1.814 3.77 

S3.10 10-5 17.431 2.217 3.766 

S3.11 10-6 17.469 2.206 3.769 

 

 

Supplementary Table 4. Average ranking of the true LD block in the simulation study with a binary 

outcome. Results are presented for the standard SNP analysis and Bayesian model with constant 

shrinkage across SNPs. Variance ratios for the top block and for the true block are also presented 

and the best performance is reached when the variance ratios are maximized. 

Differential 𝒔𝜶𝒋𝟐  according to prior information 

Model 

Scale (𝒔𝜶𝒋𝟐 ) Variance ratio 

Average 

Ranking 
prior  

support 

= 0 

prior  

support 

= 10 

Top block True block 

Standard analysis - - 2.447 1.716 3.765 

S4.1 10-4 1 2.728 1.929 4.439 

S4.2 10-4 0.1 4.447 3.168 3.355 

S4.3 10-4 0.01 8.528 5.135 2.932 

S4.4 10-4 0.001 7.343 4.078 2.957 

S4.5 10-5 1 2.729 1.929 4.439 

S4.6 10-5 0.1 4.450 3.171 3.353 

S4.7 10-5 0.01 8.639 5.185 2.937 

S4.8 10-5 0.001 8.086 4.429 2.945 

S4.9 10-5 10-4 6.257 2.518 3.326 

S4.10 10-6 0.1 4.451 3.171 3.352 

S4.11 10-6 0.01 8.650 5.189 2.938 

S4.12 10-6 0.001 8.164 4.466 2.944 

S4.13 10-6 10-4 6.437 2.596 3.298 
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Supplementary Table 5. Average ranking of the true LD block in the empirical 

example with ECRHS data and BMI as the outcome. Results are presented for the 

standard SNP analysis and Bayesian model with constant shrinkage across SNPs. 

Variance ratios for the top six blocks and for the true blocks are also presented and the 

best performance is reached when the variance ratio is maximized. 

Constant 𝒔𝜶𝒋𝟐  for all the SNPs 

 

Scale 

(𝒔𝜶𝒋𝟐 ) 

Variance ratio 

Average 

Ranking  Top 6 blocks True 

blocks 

Standard analysis - 4.226 2.316 8.167 

S5.1 105 * * * 

S5.2 104 * * * 

S5.3 5 1.154 1.278 14.333 

S5.4 2.5 1.167 1.307 14.167 

S5.5 1 1.087 1.427 9.5 

S5.6 0.1 1.222 1.445 13 

S5.7 0.01 1.421 1.982 10.667 

S5.8 0.001 4.291 2.335 8.167 

S5.9 10-4 4.309 2.349 8.167 

S5.10 10-5 4.309 2.349 8.333 

S5.11 10-6 4.310 2.350 8.167 

*Models for which effect estimates and p-values cannot be obtained due to very low 

shrinkage. 

 

 

 

Supplementary Table 6. Average ranking of the true LD blocks in the empirical example with ECRHS 

data and BMI as the outcome. Results are presented for the standard SNP analysis and Bayesian model 

when differential shrinkage is applied, with the lower and upper bounds for the shrinkage parameter 

values reported in columns 2 and 3, respectively. Variance ratios for the top six blocks and for the true 

blocks are also presented and the best performance is reached when the variance ratio is maximized. 

Differential 𝒔𝜶𝒋𝟐  according to prior information 

 

Scale (𝒔𝜶𝒋𝟐 ) Variance ratio 

Average 

Ranking 
prior  

support 

= 0 

prior 

support 

= 4 

Top 6 blocks 
True 

blocks 

Standard analysis - - 4.226 2.316 8.167 

S6.1 10-4 1 2.145 1.813 9.000 

S6.2 10-4 0.1 3.317 2.245 10.000 

S6.3 10-4 0.01 8.684 2.532 9.167 

S6.4 10-4 0.001 9.116 2.140 8.000 

S6.5 10-5 1 2.145 1.813 9.000 

S6.6 10-5 0.1 3.318 2.245 10.000 

S6.7 10-5 0.01 5.528 2.225 9.333 

S6.8 10-5 0.001 8.744 2.543 8.333 

S6.9 10-5 10-4 9.667 2.178 7.667 

S6.10 10-6 0.1 3.318 2.246 10.000 

S6.11 10-6 0.01 5.459 2.231 9.333 

S6.12 10-6 0.001 8.750 2.544 8.500 

S6.13 10-6 10-4 9.703 2.183 7.333 
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