114 research outputs found
The neural basis of hot and cold cognition in depressed patients, unaffected relatives, and low -risk healthy controls: An fMRI investigation
BACKGROUND: Modern cognitive neuropsychological models of depression posit that negatively biased emotional (“hot”) processing confers risk for depression, while preserved executive function (“cold”) cognition promotes resilience. METHODS: We compared neural responses during hot and cold cognitive tasks in 99 individuals: those at familial risk for depression (N = 30 unaffected first-degree relatives of depressed individuals) and those currently experiencing a major depressive episode (N = 39 unmedicated depressed patients) with low-risk healthy controls (N = 30). Primary analyses assessed neural activation on two functional magnetic resonance imaging tasks previously associated with depression: dorsolateral prefrontal cortex (DLPFC) responsivity during the n-back working memory task; and amygdala and subgenual anterior cingulate cortex (sgACC) responsivity during incidental emotional face processing. RESULTS: Depressed patients exhibited significantly attenuated working memory-related DLPFC activation, compared to low-risk controls and unaffected relatives; unaffected relatives did not differ from low-risk controls. We did not observe a complementary pattern during emotion processing. However, we found preliminary support that greater DLPFC activation was associated with lower amygdala response during emotion processing. LIMITATIONS: These findings require confirmation in a longitudinal study to observe each individual's risk of developing depression; without this, we cannot identify the true risk level of the first-degree relative or low-risk control group. CONCLUSIONS: These findings have implications for understanding the neural mechanisms of risk and resilience in depression: they are consistent with the suggestion that preserved executive function might confer resilience to developing depression in first-degree relatives of depressed patients
Trading people versus trading time: What is the difference?
BACKGROUND: Person trade-off (PTO) elicitations yield different values than standard utility measures, such as time trade-off (TTO) elicitations. Some people believe this difference arises because the PTO captures the importance of distributive principles other than maximizing treatment benefits. We conducted a qualitative study to determine whether people mention considerations related to distributive principles other than QALY-maximization more often in PTO elicitations than in TTO elicitations and whether this could account for the empirical differences. METHODS: 64 members of the general public were randomized to one of three different face-to-face interviews, thinking aloud as they responded to TTO and PTO elicitations. Participants responded to a TTO followed by a PTO elicitation within contexts that compared either: 1) two life-saving treatments; 2) two cure treatments; or 3) a life-saving treatment versus a cure treatment. RESULTS: When people were asked to choose between life-saving treatments, non-maximizing principles were more common with the PTO than the TTO task. Only 5% of participants considered non-maximizing principles as they responded to the TTO elicitation compared to 68% of participants who did so when responding to the PTO elicitation. Non-maximizing principles that emerged included importance of equality of life and a desire to avoid discrimination. However, these principles were less common in the other two contexts. Regardless of context, though, participants were significantly more likely to respond from a societal perspective with the PTO compared to the TTO elicitation. CONCLUSION: When lives are at stake, within the context of a PTO elicitation, people are more likely to consider non-maximizing principles, including the importance of equal access to a life-saving treatment, avoiding prejudice or discrimination, and in rare cases giving treatment priority based purely on the position of being worse-off
Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal Antibodies
Affinity reagents recognizing constant parts of antibody molecules are invaluable tools in immunotechnology applications, including purification, immobilization, and detection of immunoglobulins. In this article, murine IgG1, the primary isotype of monoclonal antibodies (mAbs) was used as target for selection of novel binders from a combinatorial ribosome display (RD) library of 1011 affibody molecules. Four rounds of selection using three different mouse IgG1 mAbs as alternating targets resulted in the identification of binders with broad mIgG1 recognition and dissociation constants (KD) in the low nanomolar to low micromolar range. For one of the binders, denoted Zmab25, competition in binding to full length mIgG1 by a streptococcal protein G (SPG) fragment and selective affinity capture of mouse IgG1 Fab fragments after papain cleavage of a full mAb suggest that an epitope functionally overlapping with the SPG-binding site in the CH1 domain of mouse IgG1 had been addressed. Interestingly, biosensor-based binding experiments showed that neither human IgG1 nor bovine Ig, the latter present in fetal bovine serum (FBS) was recognized by Zmab25. This selective binding profile towards murine IgG1 was successfully exploited in species selective recovery of two different mouse mAbs from complex samples containing FBS, resembling a hybridoma culture supernatant
Balancing equity and efficiency in the Dutch basic benefits package using the principle of proportional shortfall
Economic evaluations are increasingly used to inform decisions regarding the allocation of scarce health care resources. To systematically incorporate societal preferences into these evaluations, quality-adjusted life year gains could be weighted according to some equity principle, the most suitable of which is a matter of frequent debate. While many countries still struggle with equity concerns for priority setting in health care, the Netherlands has reached a broad consensus to use the concept of proportional shortfall. Our study evaluates the concept and its support in the Dutch health care context. We discuss arguments in the Netherlands for using proportional shortfall and difficulties in transitioning from principle to practice. In doing so, we address universal issues leading to a systematic consideration of equity concerns for priority setting in health care. The article thus has relevance to all countries struggling with the formalization of equity concerns for priority setting
Illuminating the life of GPCRs
The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented
Towards understanding the traits contributing to performance of pearl millet open-pollinated varieties in phosphorus-limited environments of West Africa
Aims
Pearl millet [Pennisetum glaucum (L.) R. Br.] open-pollinated varieties, which are the predominant cultivars, have never been systematically evaluated for adaptation to low-soil phosphorus (P), a major constraint on pearl millet production in West Africa (WA).
Methods
We evaluated grain yield (GY), flowering time (FLO), harvest index (HI), and residual grain yields (RGY) of 102 open-pollinated varieties from WA under low-P (−P) and high-P (+P) field conditions in six environments of WA. In addition, PE-related traits of the varieties were evaluated at early growth stage in a pot experiment.
Results
Significant genetic variation was observed for GY, FLO, HI and PE-related traits. P-efficient varieties had higher yield under −P conditions. Varietal performance under −P varied across environments depending on FLO, relative flowering delay under −P (FD) and RGY measured in the field. Low-P-susceptible varieties had higher FLO, lower HI than low-P-tolerant varieties. Response to direct selection under −P field conditions was 20.1 g m−2, whereas indirect selection response under +P was 16.3 g m−2.
Conclusions
Selection under −P field conditions while taking into account seasonal variations for FLO, FD and PE is expected to be important for improving GY specifically targeting −P environments in WA
Recommended from our members
Common and distinct neural effects of risperidone and olanzapine during procedural learning in schizophrenia: A randomised longitudinal fMRI study
© 2015 The Author(s). Rationale: Most cognitive domains show only minimal improvement following typical or atypical antipsychotic treatments in schizophrenia, and some may even worsen. One domain that may worsen is procedural learning, an implicit memory function relying mainly on the integrity of the fronto-striatal system. Objectives: We investigated whether switching to atypical antipsychotics would improve procedural learning and task-related neural activation in patients on typical antipsychotics. Furthermore, we explored the differential effects of the atypical antipsychotics risperidone and olanzapine. Methods: Thirty schizophrenia patients underwent functional magnetic resonance imaging during a 5-min procedural (sequence) learning task on two occasions: at baseline and 7-8 weeks later. Of 30 patients, 10 remained on typical antipsychotics, and 20 were switched randomly in equal numbers to receive either olanzapine (10-20 mg) or risperidone (4-8 mg) for 7-8 weeks. Results: At baseline, patients (all on typical antipsychotics) showed no procedural learning. At follow-up, patients who remained on typical antipsychotics continued to show a lack of procedural learning, whereas those switched to atypical antipsychotics displayed significant procedural learning (p = 0.001) and increased activation in the superior-middle frontal gyrus, anterior cingulate and striatum (cluster-corrected p < 0.05). These neural effects were present as a linear increase over five successive 30-s blocks of sequenced trials. A switch to either risperidone or olanzapine resulted in comparable performance but with both overlapping and distinct task-related activations. Conclusions: Atypical antipsychotics restore procedural learning deficits and associated neural activity in schizophrenia. Furthermore, different atypical antipsychotics produce idiosyncratic task-related neural activations, and this specificity may contribute to their differential long-term clinical profiles.Alexander von Humboldt Foundation; Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King’s College London; South London and Maudsley NHS Foundation Trus
- …