16 research outputs found

    Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J

    Full text link
    Membrane-bound phosphoinositides are signalling molecules that have a key role in vesicle trafficking in eukaryotic cells(1). Proteins that bind specific phosphoinositides mediate interactions between membrane-bounded compartments whose identity is partially encoded by cytoplasmic phospholipid tags. Little is known about the localization and regulation of mammalian phosphatidylinositol-3,5-bisphosphate ( PtdIns( 3,5)P-2), a phospholipid present in small quantities that regulates membrane trafficking in the endosome - lysosome axis in yeast(2). Here we describe a multi-organ disorder with neuronal degeneration in the central nervous system, peripheral neuronopathy and diluted pigmentation in the 'pale tremor' mouse. Positional cloning identified insertion of ETn2 beta ( early transposon 2 beta)(3) into intron 18 of Fig4 (A530089I17Rik), the homologue of a yeast SAC ( suppressor of actin) domain PtdIns(3,5) P-2 5-phosphatase located in the vacuolar membrane. The abnormal concentration of PtdIns( 3,5) P2 in cultured fibroblasts from pale tremor mice demonstrates the conserved biochemical function of mammalian Fig4. The cytoplasm of fibroblasts from pale tremor mice is filled with large vacuoles that are immunoreactive for LAMP-2 (lysosomal-associated membrane protein 2), consistent with dysfunction of the late endosome - lysosome axis. Neonatal neurodegeneration in sensory and autonomic ganglia is followed by loss of neurons from layers four and five of the cortex, deep cerebellar nuclei and other localized brain regions. The sciatic nerve exhibits reduced numbers of large-diameter myelinated axons, slowed nerve conduction velocity and reduced amplitude of compound muscle action potentials. We identified pathogenic mutations of human FIG4 (KIAA0274) on chromosome 6q21 in four unrelated patients with hereditary motor and sensory neuropathy. This novel form of autosomal recessive Charcot - Marie - Tooth disorder is designated CMT4J.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62835/1/nature05876.pd

    Animal Models of Human Cerebellar Ataxias: a Cornerstone for the Therapies of the Twenty-First Century

    Full text link

    An LKB1 AT-AC intron mutation causes Peutz-Jeghers syndrome via splicing at noncanonical cryptic splice sites

    No full text
    Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder associated with gastrointestinal polyposis and an increased cancer risk. PJS is caused by germline mutations in the tumor suppressor gene LKB1. One such mutation, IVS2+1A>G, alters the second intron 5' splice site, which has sequence features of a U12-type AT-AC intron. We report that in patients, LKB1 RNA splicing occurs from the mutated 5' splice site to several cryptic, noncanonical 3' splice sites immediately adjacent to the normal 3' splice site. In vitro splicing analysis demonstrates that this aberrant splicing is mediated by the U12-dependent spliceosome. The results indicate that the minor spliceosome can use a variety of 3' splice site sequences to pair to a given 5' splice site, albeit with tight constraints for maintaining the 3' splice site position. The unusual splicing defect associated with this PJS-causing mutation uncovers differences in splice-site recognition between the major and minor pre-mRNA splicing pathways

    Identification of mutations in CUL7 in 3-M syndrome.

    No full text
    Item does not contain fulltextIntrauterine growth retardation is caused by maternal, fetal or placental factors that result in impaired endovascular trophoblast invasion and reduced placental perfusion. Although various causes of intrauterine growth retardation have been identified, most cases remain unexplained. Studying 29 families with 3-M syndrome (OMIM 273750), an autosomal recessive condition characterized by severe pre- and postnatal growth retardation, we first mapped the underlying gene to chromosome 6p21.1 and then identified 25 distinct mutations in the gene cullin 7 (CUL7). CUL7 assembles an E3 ubiquitin ligase complex containing Skp1, Fbx29 (also called Fbw8) and ROC1 and promotes ubiquitination. Using deletion analysis, we found that CUL7 uses its central region to interact with the Skp1-Fbx29 heterodimer. Functional studies indicated that the 3-M-associated CUL7 nonsense and missense mutations R1445X and H1464P, respectively, render CUL7 deficient in recruiting ROC1. These results suggest that impaired ubiquitination may have a role in the pathogenesis of intrauterine growth retardation in humans
    corecore