142 research outputs found

    Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes

    Get PDF
    Background: Prenatal mercury (Hg) exposure is associated with adverse child neurobehavioral outcomes. Because Hg can interfere with placental functioning and cross the placenta to target the fetal brain, prenatal Hg exposure can inhibit fetal growth and development directly and indirectly. Objectives: We examined potential associations between prenatal Hg exposure assessed through infant toenail Hg, placental DNA methylation changes, and newborn neurobehavioral outcomes. Methods: The methylation status of \u3e 485,000 CpG loci was interrogated in 192 placental samples using Illumina’s Infinium HumanMethylation450 BeadArray. Hg concentrations were analyzed in toenail clippings from a subset of 41 infants; neurobehavior was assessed using the NICU Network Neurobehavioral Scales (NNNS) in an independent subset of 151 infants. Results: We identified 339 loci with an average methylation difference \u3e 0.125 between any two toenail Hg tertiles. Variation among these loci was subsequently found to be associated with a high-risk neurodevelopmental profile (omnibus p-value = 0.007) characterized by the NNNS. Ten loci had p \u3c 0.01 for the association between methylation and the high-risk NNNS profile. Six of 10 loci reside in the EMID2 gene and were hypomethylated in the 16 high-risk profile infants’ placentas. Methylation at these loci was moderately correlated (correlation coefficients range, –0.33 to –0.45) with EMID2 expression. Conclusions: EMID2 hypomethylation may represent a novel mechanism linking in utero Hg exposure and adverse infant neurobehavioral outcomes

    Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data

    Get PDF
    Background: Umbilical cord blood (UCB) is commonly used in epigenome-wide association studies of prenatal exposures. Accounting for cell type composition is critical in such studies as it reduces confounding due to the cell specificity of DNA methylation (DNAm). In the absence of cell sorting information, statistical methods can be applied to deconvolve heterogeneous cell mixtures. Among these methods, reference-based approaches leverage age-appropriate cell-specific DNAm profiles to estimate cellular composition. In UCB, four reference datasets comprising DNAm signatures profiled in purified cell populations have been published using the Illumina 450 K and EPIC arrays. These datasets are biologically and technically different, and currently, there is no consensus on how to best apply them. Here, we systematically evaluate and compare these datasets and provide recommendations for reference-based UCB deconvolution. Results: We first evaluated the four reference datasets to ascertain both the purity of the samples and the potential cell cross-contamination. We filtered samples and combined datasets to obtain a joint UCB reference. We selected deconvolution libraries using two different approaches: automatic selection using the top differentially methylated probes from the function pickCompProbes in minfi and a standardized library selected using the IDOL (Identifying Optimal Libraries) iterative algorithm. We compared the performance of each reference separately and in combination, using the two approaches for reference library selection, and validated the results in an independent cohort (Generation R Study, n = 191) with matched Fluorescence-Activated Cell Sorting measured cell counts. Strict filtering and combination of the references significantly improved the accuracy and efficiency of cell type estimates. Ultimately, the IDOL library outperformed the library from the automatic selection method implemented in pickCompProbes. Conclusion: These results have important implications for epigenetic studies in UCB as implementing this method will optimally reduce confounding due to cellular heterogeneity. This work provides guidelines for future referencebased UCB deconvolution and establishes a framework for combining reference datasets in other tissues

    Microtubules as Platforms for Assaying Actin Polymerization In Vivo

    Get PDF
    The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process

    Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas

    Get PDF
    BACKGROUND: Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas. METHODS: Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples. RESULTS: Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05). CONCLUSIONS: Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations

    Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas.

    Get PDF
    BACKGROUND: Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas. METHODS: Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples. RESULTS: Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05). CONCLUSIONS: Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations
    corecore