27 research outputs found

    Butyrate down-regulates CD44 transcription and liver colonisation in a highly metastatic human colon carcinoma cell line

    Get PDF
    Over-expression of the adhesion molecule CD44 and its splice variants, especially CD44v6, is associated with poor prognosis and metastasis. We aimed at regulating the expression of CD44 in the highly metastatic human colon cancer cell line HM7 and thereby affecting its metastatic ability. HM7 cells show constitutive expression of CD44 standard and variants isoforms, which were significantly down-regulated by treatment with butyrate. Butyrate significantly inhibited transcription of the CD44 gene and abolished epidermal growth factor-mediated up-regulation of the reporter gene luciferase subcloned upstream to the CD44 promoter (−1.1 kb) and transfected to HM7 cells. Nuclear proteins from butyrate-treated cells bound to an epidermal growth factor receptor element motif present in the CD44 promoter. Epidermal growth factor receptor element-site directed mutations eliminated the inducibility of the luciferase reporter gene and did not allowed binding of nuclear proteins harvested from butyrate-treated cells. Butyrate induced CD44 gene repression by specifically interacting with an epidermal growth factor receptor element nuclear transcriptional factor. This interaction affects CD44 transcriptional activity vis-à-vis in vivo metastatic ability of HM7 cells. These results provide additional insight into the anticarcinogenic properties of butyrate

    Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma

    Get PDF
    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival

    Population-based trend analysis of laparoscopic Nissen and Toupet fundoplications for gastroesophageal reflux disease

    Get PDF
    The Nissen and Toupet fundoplications are the most commonly used techniques for surgical treatment of gastroesophageal reflux disease. To date, no population-based trend analysis has been reported examining the choice of procedure and short-term outcomes. This study was designed to analyze trends in the use of Nissen versus Toupet fundoplications, and corresponding short-term outcomes during a 10-year period between 1995 and 2004
    corecore