36 research outputs found

    Electron excitation and energy transfer rates for H2O in the upper atmosphere

    Get PDF
    Recent measurements of the cross sections for electronic state excitations in H2O have made it possible to calculate rates applicable to these excitation processes. We thus present here calculations of electron energy transfer rates for electronic and vibrational state excitations in H2O, as well as rates for excitation of some of these states by atmospheric thermal and auroral secondary electrons. The calculation of these latter rates is an important first step towards our aim of including water into a statistical equilibrium model of the atmosphere under auroral conditions.Comment: 15 pages, 8 figure

    The microwave background temperature at the redshift of 2.33771

    Full text link
    The Cosmic Microwave Background radiation is a fundamental prediction of Hot Big Bang cosmology. The temperature of its black-body spectrum has been measured at the present time, TCMBR,0T_{\rm CMBR,0} = 2.726±\pm 0.010 K, and is predicted to have been higher in the past. At earlier time, the temperature can be measured, in principle, using the excitation of atomic fine structure levels by the radiation field. All previous measurements however give only upper limits as they assume that no other significant source of excitation is present. Here we report the detection of absorption from the first {\sl and} second fine-structure levels of neutral carbon atoms in an isolated remote cloud at a redshift of 2.33771. In addition, the unusual detection of molecular hydrogen in several rotational levels and the presence of ionized carbon in its excited fine structure level make the absorption system unique to constrain, directly from observation, the different excitation processes at play. It is shown for the first time that the cosmic radiation was warmer in the past. We find 6.0 < T_{\rm CMBR} < 14 K at z = 2.33771 when 9.1 K is expected in the Hot Big Bang cosmology.Comment: 20 pages, 5 figures, accepted for publication in Nature, Press embargo until 1900 hrs London time (GMT) on 20 Dec 200

    Transient Protein-Protein Interaction of the SH3-Peptide Complex via Closely Located Multiple Binding Sites

    Get PDF
    Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site (MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model. This improvement in prediction originates from a more realistic description of complex formation than the conventional interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex formation is important for the accurate description of protein complex formation, and especially for those of weak or transient protein complexes

    Opportunities to Learn Mathematics Pedagogy and Connect Classroom Learning to Practice: A Study of Future Teachers in the United States and Singapore

    Get PDF
    In this study, we conducted secondary analyses using the TEDS-M database to explore future mathematics specialists teachers’ opportunities to learn (OTL) how to teach mathematics. We applied latent class analysis techniques to differentiate among groups of prospective mathematics specialists with potentially different OTL mathematics pedagogy within the United States and Singapore. Within the United States, three subgroups were identified: (a) Comprehensive OTL, (b) Limited OTL, and (c) OTL Mathematics Pedagogy. Within Singapore, four subgroups were identified: (a) Comprehensive OTL, (b) Limited Opportunities to Connect Classroom Learning with Practice, (c) OTL Mathematics Pedagogy, and (d) Basic OTL. Understanding the opportunities different prospective teachers had to learn from and their experiences with different components of instructional practice in university and practicum settings has implications for teacher preparation programs

    Group Characteristics and Task Accuracy in Distributed Remote User Controlled Manufacturing as Collaborative Environment

    No full text
    Collaborative environments today are very successful when used in multiplayer games and for meetings organizing, which gives an idea to explore its potentials in remotely controlled decentralized manufacturing. This survey is based on the experiment that involved 34 small collaborative groups including 68 students in Serbia, that have used the interface for remote collaborative control of manufacturing systems to control of CNC machine located in Portugal. Our previous surveys have shown that group work consumes less time than individual work in most working options. This paper examines influence of homogeneity of the groups. Results of statistical examination show that percentages of errors are significantly or highly significantly higher in homogeneous compared to a non-homogeneous groups. Therefore, it could be recommended to form heterogeneous groups when remotely controlling decentralized manufacturing processes
    corecore