923 research outputs found

    Microstructural evolution under low shear rates during Rheo processing of LM25 alloy

    Get PDF
    Β© ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure

    The Unfolded Protein Response Is Not Necessary for the G1/S Transition, but It Is Required for Chromosome Maintenance in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) is a eukaryotic signaling pathway, from the endoplasmic reticulum (ER) to the nucleus. Protein misfolding in the ER triggers the UPR. Accumulating evidence links the UPR in diverse aspects of cellular homeostasis. The UPR responds to the overall protein synthesis capacity and metabolic fluxes of the cell. Because the coupling of metabolism with cell division governs when cells start dividing, here we examined the role of UPR signaling in the timing of initiation of cell division and cell cycle progression, in the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS: We report that cells lacking the ER-resident stress sensor Ire1p, which cannot trigger the UPR, nonetheless completed the G1/S transition on time. Furthermore, loss of UPR signaling neither affected the nutrient and growth rate dependence of the G1/S transition, nor the metabolic oscillations that yeast cells display in defined steady-state conditions. Remarkably, however, loss of UPR signaling led to hypersensitivity to genotoxic stress and a ten-fold increase in chromosome loss. CONCLUSIONS/SIGNIFICANCE: Taken together, our results strongly suggest that UPR signaling is not necessary for the normal coupling of metabolism with cell division, but it has a role in genome maintenance. These results add to previous work that linked the UPR with cytokinesis in yeast. UPR signaling is conserved in all eukaryotes, and it malfunctions in a variety of diseases, including cancer. Therefore, our findings may be relevant to other systems, including humans

    An Explicit Strategy Prevails When the Cerebellum Fails to Compute Movement Errors

    Get PDF
    In sensorimotor adaptation, explicit cognitive strategies are thought to be unnecessary because the motor system implicitly corrects performance throughout training. This seemingly automatic process involves computing an error between the planned movement and actual feedback of the movement. When explicitly provided with an effective strategy to overcome an experimentally induced visual perturbation, people are immediately successful and regain good task performance. However, as training continues, their accuracy gets worse over time. This counterintuitive result has been attributed to the independence of implicit motor processes and explicit cognitive strategies. The cerebellum has been hypothesized to be critical for the computation of the motor error signals that are necessary for implicit adaptation. We explored this hypothesis by testing patients with cerebellar degeneration on a motor learning task that puts the explicit and implicit systems in conflict. Given this, we predicted that the patients would be better than controls in maintaining an effective strategy assuming strategic and adaptive processes are functionally and neurally independent. Consistent with this prediction, the patients were easily able to implement an explicit cognitive strategy and showed minimal interference from undesirable motor adaptation throughout training. These results further reveal the critical role of the cerebellum in an implicit adaptive process based on movement errors and suggest an asymmetrical interaction of implicit and explicit processes

    Improved Measurement of the Pseudoscalar Decay Constant fDsf_{D_{s}}

    Get PDF
    We present a new determination of the Ds decay constant, f_{Ds} using 5 million continuum charm events obtained with the CLEO II detector. Our value is derived from our new measured ratio of widths for Ds -> mu nu/Ds -> phi pi of 0.173+/- 0.021 +/- 0.031. Taking the branching ratio for Ds -> phi pi as (3.6 +/- 0.9)% from the PDG, we extract f_{Ds} = (280 +/- 17 +/- 25 +/- 34){MeV}. We compare this result with various model calculations.Comment: 23 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    First Observation of Ο„β†’3πηντ\tau\to 3\pi\eta\nu_{\tau} and Ο„β†’f1πντ\tau\to f_{1}\pi\nu_{\tau} Decays

    Full text link
    We have observed new channels for Ο„\tau decays with an Ξ·\eta in the final state. We study 3-prong tau decays, using the Ξ·β†’Ξ³Ξ³\eta\to\gamma\gamma and \eta\to 3\piz decay modes and 1-prong decays with two \piz's using the Ξ·β†’Ξ³Ξ³\eta\to\gamma\gamma channel. The measured branching fractions are \B(\tau^{-}\to \pi^{-}\pi^{-}\pi^{+}\eta\nu_{\tau}) =(3.4^{+0.6}_{-0.5}\pm0.6)\times10^{-4} and \B(\tau^{-}\to \pi^{-}2\piz\eta\nu_{\tau} =(1.4\pm0.6\pm0.3)\times10^{-4}. We observe clear evidence for f1→ηππf_1\to\eta\pi\pi substructure and measure \B(\tau^{-}\to f_1\pi^{-}\nu_{\tau})=(5.8^{+1.4}_{-1.3}\pm1.8)\times10^{-4}. We have also searched for Ξ·β€²(958)\eta'(958) production and obtain 90% CL upper limits \B(\tau^{-}\to \pi^{-}\eta'\nu_\tau)<7.4\times10^{-5} and \B(\tau^{-}\to \pi^{-}\piz\eta'\nu_\tau)<8.0\times10^{-5}.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter

    ΛΛˉ\Lambda\bar{\Lambda} Production in Two-Photon Interactions at CLEO

    Full text link
    Using the CLEO detector at the Cornell e+eβˆ’e^+e^- storage ring, CESR, we study the two-photon production of ΛΛˉ\Lambda \bar{\Lambda}, making the first observation of γγ→ΛΛˉ\gamma \gamma \to \Lambda \bar{\Lambda}. We present the cross-section for γγ→ΛΛˉ \gamma \gamma \to \Lambda \bar{\Lambda} as a function of the Ξ³Ξ³\gamma \gamma center of mass energy and compare it to that predicted by the quark-diquark model.Comment: 10 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Role of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading

    Get PDF
    Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP(8-37), for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP(8-37) was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP(8-37) both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP(8-37) administration.CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton
    • …
    corecore