84 research outputs found

    UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?

    Get PDF
    Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. We used a Surface Plasmon Resonance (SPR)-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM

    Determinants of Aortic Stiffness: 16-Year Follow-Up of the Whitehall II Study

    Get PDF
    Aortic stiffness is a strong predictor of cardiovascular disease endpoints. Cross-sectional studies have shown associations of various cardiovascular risk factors with aortic pulse wave velocity, a measure of aortic stiffness, but the long-term impact of these factors on aortic stiffness is unknown.In 3,769 men and women from the Whitehall II cohort, a wide range of traditional and novel cardiovascular risk factors were determined at baseline (1991-1993) and aortic pulse wave velocity was measured at follow-up (2007-2009). The prospective associations between each baseline risk factor and aortic pulse wave velocity at follow-up were assessed through sex stratified linear regression analysis adjusted for relevant confounders. Missing data on baseline determinants were imputed using the Multivariate Imputation by Chained Equations.Among men, the strongest predictors were waist circumference, waist-hip ratio, heart rate and interleukin 1 receptor antagonist, and among women, adiponectin, triglycerides, pulse pressure and waist-hip ratio. The impact of 10 centimeter increase in waist circumference on aortic pulse wave velocity was twice as large for men compared with women (men: 0.40 m/s (95%-CI: 0.24;0.56); women: 0.17 m/s (95%-CI: -0.01;0.35)), whereas the opposite was true for the impact of a two-fold increase in adiponectin (men: -0.30 m/s (95%-CI: -0.51;-0.10); women: 0.61 m/s (95%-CI: -0.86;-0.35)).In this large prospective study, central obesity was a strong predictor of aortic stiffness. Additionally, heart rate in men and adiponectin in women predicted aortic pulse wave velocity suggesting that strategies to prevent aortic stiffening should be focused differently by sex

    Knowledge-Driven Multi-Locus Analysis Reveals Gene-Gene Interactions Influencing HDL Cholesterol Level in Two Independent EMR-Linked Biobanks

    Get PDF
    Genome-wide association studies (GWAS) are routinely being used to examine the genetic contribution to complex human traits, such as high-density lipoprotein cholesterol (HDL-C). Although HDL-C levels are highly heritable (h2∼0.7), the genetic determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this discrepancy may include rare variants, structural variants, gene-environment (GxE) interactions, and gene-gene (GxG) interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in the context of comprehensive electronic medical records (EMRs). Here we apply an EMR-based phenotyping approach, within the context of routine care, to replicate several known associations between HDL-C and previously characterized genetic variants: CETP (rs3764261, p = 1.22e-25), LIPC (rs11855284, p = 3.92e-14), LPL (rs12678919, p = 1.99e-7), and the APOA1/C3/A4/A5 locus (rs964184, p = 1.06e-5), all adjusted for age, gender, body mass index (BMI), and smoking status. By using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between LPL (which modulates the incorporation of triglyceride into HDL) and ABCA1 (which modulates the incorporation of free cholesterol into HDL). These results demonstrate that gene-gene interactions modulate complex human traits, including HDL cholesterol

    Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM

    Tuning the Mammalian Circadian Clock: Robust Synergy of Two Loops

    Get PDF
    The circadian clock is accountable for the regulation of internal rhythms in most living organisms. It allows the anticipation of environmental changes during the day and a better adaptation of physiological processes. In mammals the main clock is located in the suprachiasmatic nucleus (SCN) and synchronizes secondary clocks throughout the body. Its molecular constituents form an intracellular network which dictates circadian time and regulates clock-controlled genes. These clock-controlled genes are involved in crucial biological processes including metabolism and cell cycle regulation. Its malfunction can lead to disruption of biological rhythms and cause severe damage to the organism. The detailed mechanisms that govern the circadian system are not yet completely understood. Mathematical models can be of great help to exploit the mechanism of the circadian circuitry. We built a mathematical model for the core clock system using available data on phases and amplitudes of clock components obtained from an extensive literature search. This model was used to answer complex questions for example: how does the degradation rate of Per affect the period of the system and what is the role of the ROR/Bmal/REV-ERB (RBR) loop? Our findings indicate that an increase in the RNA degradation rate of the clock gene Period (Per) can contribute to increase or decrease of the period - a consequence of a non-monotonic effect of Per transcript stability on the circadian period identified by our model. Furthermore, we provide theoretical evidence for a potential role of the RBR loop as an independent oscillator. We carried out overexpression experiments on members of the RBR loop which lead to loss of oscillations consistent with our predictions. These findings challenge the role of the RBR loop as a merely auxiliary loop and might change our view of the clock molecular circuitry and of the function of the nuclear receptors (REV-ERB and ROR) as a putative driving force of molecular oscillations

    Nutritional indices in the gypsy moth ( Lymantria dispar (L.)) under field conditions and host switching situations

    Full text link
    A large proportion of gypsy moths ( Lymantria dispar (L.)) are likely to experience multiple species diets in the field due to natural wandering and host switching which occurs with these insects. Nutritional indices in fourth and fifth instar gypsy moth larvae were studied in the field for insects that were switched to a second host species when they were fourth instars. The tree species used as hosts were northern pin oak ( Quercus ellipsoidalis E. J. Hill), white oak ( Q. alba L.), big-tooth aspen ( Populus grandidentata Michx.), and trembling aspen ( P. tremuloides Michx.). Conclusions of this study include: 1) Insects which fed before the host switch on northern pin oak performed better after the host switch than did insects with other types of early dietary experience. While the northern pin oak-started insects had very low relative food consumption rates on their second host species immediately after the switch, one instar later they had the highest ranked consumption rates. During both instars they had the second highest efficiencies of converting ingested and digested food to body mass. High food consumption rates and relatively high efficiency of food conversion helped these insects to obtain the highest ranked mean relative growth rates in the fifth instar compared to the relative growth rates obtained by insects from any of the other first host species. 2) Among the four host species examined, a second host of trembling aspen was most advantageous for the insects. Feeding on this species after the switch led to higher larval weights and higher relative growth rates for insects than did any of the other second host species. The insects on trembling aspen attained excellent growth despite only mediocre to low food conversion efficiencies. The low efficiencies were offset by high relative food consumption rates. 3) Low food consumption rates often tend to be paired with high efficiency of conversion and vice versa. 4) There is no discernable tendency for the first plant species eaten to cause long-term inductions which affect the ability of gypsy moths to utilize subsequent host plants. Insects did not tend to consume more, grow faster, or be more efficient if their second host plant was either the same as their rearing plant or congeneric to it. Methods are delineated which allow values of nutritional indices to be obtained for insects on intact host plants under field conditions. These methods are useful for the purpose of answering questions about the relative effects that different diet treatments have on insect response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47803/1/442_2004_Article_BF00323145.pd

    Effects of host switching on gypsy moth ( Lymantria dispar (L.)) under field conditions

    Full text link
    Effects of various single and two species diets on the performance of gypsy moth ( Lymantria dispar (L.)) were studied when this insect was reared from hatch to population on intact host trees in the field. The tree species used for this study were red oak ( Quercus rubra L.), white oak (Q. alba L.), bigtooth aspen ( Populus grandidentata Michaux), and trembling aspen ( P. tremuloides Michaux). These are commonly available host trees in the Lake States region. The study spanned two years and was performed at two different field sites in central Michigan. Conclusions drawn from this study include: (1) Large differences in gypsy moth growth and survival can occur even among diet sequences composed of favorable host species. (2) Larvae that spent their first two weeks feeding on red oak performed better during this time period than larvae on all other host species in terms of mean weight, mean relative growth rate (RGR), and mean level of larval development, while larvae on a first host of bigtooth aspen were ranked lowest in terms of mean weight, RGR, and level of larval development. (3) Combination diets do not seem to be inherently better or worse than diets composed of only a single species; rather, insect performance was affected by the types of host species eaten and the time during larval development that these host species were consumed instead of whether larvae ate single species diets or mixed species diets. (4) In diets composed of two host species, measures of gypsy moth performance are affected to different extents in the latter part of the season by the two different hosts; larval weights and development rates show continued effects of the first host fed upon while RGRs, mortality, and pupal weights are affected strongly by the second host type eaten. (5) Of the diets investigated in this study, early feeding on red oak followed by later feeding on an aspen, particularly trembling aspen, is most beneficial to insects in terms of attaining high levels of performance throughout their lives.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47802/1/442_2004_Article_BF00323144.pd
    corecore