648 research outputs found

    Carbon isotope anomaly in the major plant C-1 pool and its global biogeochemical implications

    Get PDF
    We report that the most abundant C-1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in C-13. Plant-derived C-1 volatile organic compounds (VOCs) are also anomalously depleted in C-13 compared with Cn+1 VOCs. The results confirm that the plant methoxyl pool is the predominant source of biospheric C-1 compounds of plant origin such as methanol, chloromethane and bromomethane. Furthermore this pool, comprising ca 2.5% of carbon in plant biomass, could be an important substrate for methanogenesis and thus be envisaged as a possible source of isotopically light methane entering the atmosphere. Our findings have significant implications for the use of carbon isotope ratios in elucidation of global carbon cycling. Moreover methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin

    Examination of Antibody Responses as a Measure of Exposure to Malaria in the Indigenous Batwa and Their Non-Indigenous Neighbors in Southwestern Uganda

    Get PDF
    Understanding variations in malaria transmission and exposure is critical to identify populations at risk and enable better targeting of interventions. The indigenous Batwa of southwestern Uganda have a disproportionate burden of malaria infection compared with their non-indigenous neighbors. To better understand the individual- and community-level determinants of malaria exposure, a seroepidemiological study was conducted in 10 local council cells in Kanungu District, Uganda, in April 2014. The Batwa had twice the odds of being seropositive to two Plasmodium falciparum–specific antigens, apical membrane antigen-1 and merozoite surface protein-119, compared with the non-indigenous Bakiga (odds ratio = 2.08, 95% confidence interval = 1.51–2.88). This trend was found irrespective of altitude level and after controlling for cell location. Seroconversion rates in the Batwa were more than twice those observed in the Bakiga. For the Batwa, multiple factors may be associated with higher exposure to malaria and antibody levels relative to their non-indigenous neighbors

    Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1

    Get PDF
    A Gram-positive bacterial strain capable of aerobic biodegradation of 4-fluorophenol (4-FP) as the sole source of carbon and energy was isolated by selective enrichment from soil samples collected near an industrial site. The organism, designated strain IF1, was identified as a member of the genus Arthrobacter on the basis of 16S ribosomal RNA gene sequence analysis. Arthrobacter strain IF1 was able to mineralize 4-FP up to concentrations of 5 mM in batch culture. Stoichiometric release of fluoride ions was observed, suggesting that there is no formation of halogenated dead-end products during 4-FP metabolism. The degradative pathway of 4-FP was investigated using enzyme assays and identification of intermediates by gas chromatography (GC), GC–mass spectrometry (MS), high-performance liquid chromatography, and liquid chromatography–MS. Cell-free extracts of 4-FP-grown cells contained no activity for catechol 1,2-dioxygenase or catechol 2,3-dioxygenase, which indicates that the pathway does not proceed through a catechol intermediate. Cells grown on 4-FP oxidized 4-FP, hydroquinone, and hydroxyquinol but not 4-fluorocatechol. During 4-FP metabolism, hydroquinone accumulated as a product. Hydroquinone could be converted to hydroxyquinol, which was further transformed into maleylacetic acid and β-ketoadipic acid. These results indicate that the biodegradation of 4-FP starts with a 4-FP monooxygenase reaction that yields benzoquinone, which is reduced to hydroquinone and further metabolized via the β-ketoadipic acid pathway

    Human genetics in troubled times and places

    Get PDF
    Abstract The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism were associated with widespread migration, especially of Jewish workers expelled from Germany, and of their children, a number of whom would become major contributors to the post-war generation of human and medical geneticists in Britain and America. In Germany itself, eminent geneticists were also involved in the abuses carried out in the name of ‘eugenics’ and ‘race biology’. However, geneticists in America, Britain and the rest of Europe were largely responsible for the ideological foundations of these abuses. In the Soviet Union, geneticists and genetics itself became the object of persecution from the 1930s till as late as the mid 1960s, with an almost complete destruction of the field during this time; this extended also to Eastern Europe and China as part of the influence of Russian communism. Most recently, at the end of the twentieth century, China saw a renewal of government sponsored eugenics programmes, now mostly discarded. During the post-world war 2 decades, human genetics research benefited greatly from recognition of the genetic dangers posed by exposure to radiation, following the atomic bomb explosions in Japan, atmospheric testing and successive accidental nuclear disasters in Russia. Documenting and remembering these traumatic events, now largely forgotten among younger workers, is essential if we are to fully understand the history of human genetics and avoid the repetition of similar disasters in the future. The power of modern human genetic and genomic techniques now gives a greater potential for abuse as well as for beneficial use than has ever been seen in the past
    corecore