550 research outputs found

    Fatigue evaluation in maintenance and assembly operations by digital human simulation

    Get PDF
    Virtual human techniques have been used a lot in industrial design in order to consider human factors and ergonomics as early as possible. The physical status (the physical capacity of virtual human) has been mostly treated as invariable in the current available human simulation tools, while indeed the physical capacity varies along time in an operation and the change of the physical capacity depends on the history of the work as well. Virtual Human Status is proposed in this paper in order to assess the difficulty of manual handling operations, especially from the physical perspective. The decrease of the physical capacity before and after an operation is used as an index to indicate the work difficulty. The reduction of physical strength is simulated in a theoretical approach on the basis of a fatigue model in which fatigue resistances of different muscle groups were regressed from 24 existing maximum endurance time (MET) models. A framework based on digital human modeling technique is established to realize the comparison of physical status. An assembly case in airplane assembly is simulated and analyzed under the framework. The endurance time and the decrease of the joint moment strengths are simulated. The experimental result in simulated operations under laboratory conditions confirms the feasibility of the theoretical approach

    Mini-laparoscopic versus laparoscopic approach to appendectomy

    Get PDF
    BACKGROUND: The purpose of this clinical study is to evaluate the feasibility of using 2-mm laparoscopic instruments to perform an appendectomy in patients with clinically suspected acute appendicitis and compare the outcome of this mini-laparoscopic or "needlescopic" approach to the conventional laparoscopic appendectomy. METHODS: Two groups of patients undergoing appendectomy over 24 months were studied. In the first group, needlescopic appendectomy was performed in 15 patients by surgeons specializing in advanced laparoscopy. These patients were compared with the second or control group that included 21 consecutive patients who underwent laparoscopic appendectomy. We compared the patients' demographic data, operative findings, complications, postoperative pain medicine requirements, length of hospital stay, and recovery variables. Differences were considered statistically significant at a p-value < 0.05. RESULTS: Patient demographics, history of previous abdominal surgery, and operative findings were similar in both groups. There was no conversion to open appendectomy in either group. No postoperative morbidity or mortality occurred in either group. The needlescopic group had a significantly shorter mean operative time (p = 0.02), reduced postoperative narcotics requirements (p = 0.05), shorter hospital stay (p = 0.04), and quicker return to work (p = 0.03) when compared with the laparoscopic group. CONCLUSIONS: We conclude that the needlescopic technique is a safe and effective approach to appendectomy. When performed by experienced laparoscopic surgeons, the needlescopic technique results in significantly shorter postoperative convalescence and a prompt recovery

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    Fusion of Color Doppler and Magnetic Resonance Images of the Heart

    Get PDF
    This study was designed to establish and analyze color Doppler and magnetic resonance fusion images of the heart, an approach for simultaneous testing of cardiac pathological alterations, performance, and hemodynamics. Ten volunteers were tested in this study. The echocardiographic images were produced by Philips IE33 system and the magnetic resonance images were generated from Philips 3.0-T system. The fusion application was implemented on MATLAB platform utilizing image processing technology. The fusion image was generated from the following steps: (1) color Doppler blood flow segmentation, (2) image registration of color Doppler and magnetic resonance imaging, and (3) image fusion of different image types. The fusion images of color Doppler blood flow and magnetic resonance images were implemented by MATLAB programming in our laboratory. Images and videos were displayed and saved as AVI and JPG. The present study shows that the method we have developed can be used to fuse color flow Doppler and magnetic resonance images of the heart. We believe that the method has the potential to: fill in information missing from the ultrasound or MRI alone, show structures outside the field of view of the ultrasound through MR imaging, and obtain complementary information through the fusion of the two imaging methods (structure from MRI and function from ultrasound)

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Exploring cross-sectional associations between common childhood illness, housing and social conditions in remote Australian Aboriginal communities

    Get PDF
    Background:\ud There is limited epidemiological research that provides insight into the complex web of causative and moderating factors that links housing conditions to a variety of poor health outcomes. This study explores the relationship between housing conditions (with a primary focus on the functional state of infrastructure) and common childhood illness in remote Australian Aboriginal communities for the purpose of informing development of housing interventions to improve child health.\ud \ud Methods:\ud Hierarchical multi-level analysis of association between carer report of common childhood illnesses and functional and hygienic state of housing infrastructure, socio-economic, psychosocial and health related behaviours using baseline survey data from a housing intervention study.\ud \ud Results:\ud Multivariate analysis showed a strong independent association between report of respiratory infection and overall functional condition of the house (Odds Ratio (OR) 3.00; 95%CI 1.36-6.63), but no significant association between report of other illnesses and the overall functional condition or the functional condition of infrastructure required for specific healthy living practices. Associations between report of child illness and secondary explanatory variables which showed an OR of 2 or more included: for skin infection - evidence of poor temperature control in the house (OR 3.25; 95%CI 1.06-9.94), evidence of pests and vermin in the house (OR 2.88; 95%CI 1.25-6.60); for respiratory infection - breastfeeding in infancy (OR 0.27; 95%CI 0.14-0.49); for diarrhoea/vomiting - hygienic state of food preparation and storage areas (OR 2.10; 95%CI 1.10-4.00); for ear infection - child care attendance (OR 2.25; 95%CI 1.26-3.99).\ud \ud Conclusion:\ud These findings add to other evidence that building programs need to be supported by a range of other social and behavioural interventions for potential health gains to be more fully realised

    Why Rice Farmers Don't Sail: Coastal Subsistence Traditions and Maritime Trends in Early China

    Get PDF
    The Lower Yangtze River Valley is a key region for the early development of rice farming and the emergence of wet rice paddy field systems. Subsistence evidence from Neolithic sites in this area highlights the importance of freshwater wetlands for both plant and animal food resources. Early Neolithic rice cultivators looked inland, especially to wetlands and nearby woodlands, for their main protein sources. Links to the sea among these Neolithic populations are notably scarce. Due to the high yields of wet rice, compared with other staple crops as well as dryland rice, the wetland rice focused subsistence strategy of the Lower Yangtze would have supported high, and increasing, local population densities. Paddy agriculture demands labor input and water management on a large scale, which would have stimulated and reinforced trends towards more complex societies, such as that represented by Liangzhu in the lower Yangtze region. Population growth could have been largely absorbed locally, suggesting that population packing, not migration, was the dominant trend. Other case studies of agricultural dispersal, for the Korean Peninsula and Japan further illustrate the lack of correlation between the spread of rice agriculture and wet rice cultivation. Although wet rice cultivation was a pull factor that drew local populations towards increased density and increased social complexity, it did not apparently push groups to migrate outwards. Instead, the transition from wetland to rain fed rice cultivation systems and/or the integration of rice with rain fed millet crops are much more likely to have driven the demographic dynamics that underpin early farmer migrations and crop dispersal

    Nucleotide Discrimination with DNA Immobilized in the MspA Nanopore

    Get PDF
    Nanopore sequencing has the potential to become a fast and low-cost DNA sequencing platform. An ionic current passing through a small pore would directly map the sequence of single stranded DNA (ssDNA) driven through the constriction. The pore protein, MspA, derived from Mycobacterium smegmatis, has a short and narrow channel constriction ideally suited for nanopore sequencing. To study MspA's ability to resolve nucleotides, we held ssDNA within the pore using a biotin-NeutrAvidin complex. We show that homopolymers of adenine, cytosine, thymine, and guanine in MspA exhibit much larger current differences than in α-hemolysin. Additionally, methylated cytosine is distinguishable from unmethylated cytosine. We establish that single nucleotide substitutions within homopolymer ssDNA can be detected when held in MspA's constriction. Using genomic single nucleotide polymorphisms, we demonstrate that single nucleotides within random DNA can be identified. Our results indicate that MspA has high signal-to-noise ratio and the single nucleotide sensitivity desired for nanopore sequencing devices

    Shortfalls and Solutions for Meeting National and Global Conservation Area Targets

    Get PDF
    Governments have committed to conserving 17% of terrestrial and 10% of marine environments globally, especially “areas of particular importance for biodiversity” through “ecologically representative” Protected Area (PA) systems or other “area-based conservation measures”, while individual countries have committed to conserve 3–50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59–68% of ecoregions, 77–78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km2 terrestrial PA network needs only 3.3 million km2 to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, costefficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community- and privately managed sites and other effective area-based conservation measures.We are grateful to the many individuals and organizations who contribute to the IUCN Red List of Threatened Species,WDPA, or to identification of IBAs or AZEs. We thank A. Bennett for help with data collation and N. Dulvy, W. Laurance, and D. Faith for helpful comments on an earlier draft. This work was supported by the Cambridge Conservation Initiative Collaborative Fund and Arcadia.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/conl.1215
    corecore