29 research outputs found

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use-inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill-building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science

    Dynamic compartmental model of trends in Australian drug use

    No full text
    A five-state compartment model of trends in illicit drug use in Australia is parameterized using data from multiple sources. The model reproduces historical prevalence and supports what-if analyses under the assumption that past trajectories of drug escalation and desistance persist. For fixed initiation, the system has a unique stable equilibrium. The chief qualitative finding is that even though some users escalate rapidly, regular injection drug use still adjusts to changes in incidence with considerable inertia and delay. This has important policy implications, e.g., concerning the timing of reductions in drug-related social cost generated by interventions that reduce the social cost per injection user versus those that cut drug initiation. Copyright Springer Science+Business Media, LLC 2007Dynamic modeling, Drugs, Epidemic, Injection drug use Compartmental models,

    Drought impact on forest carbon dynamics and fluxes in Amazonia

    No full text
    In 2005 and 2010 the Amazon basin experienced two strong droughts', driven by shifts in the tropical hydrological regime(2) possibly associated with global climate change(3), as predicted by some global models'. Tree mortality increased after the 2005 drought(4), and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth(6). We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots

    Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue.

    No full text
    International audienceAIMS/HYPOTHESIS: Increased adipose tissue secretion of adipokines and cytokines has been implicated in the chronic low-grade inflammation state and insulin resistance associated with obesity. We tested here whether the cardiovascular and metabolic hormone atrial natriuretic peptide (ANP) was able to modulate adipose tissue secretion of several adipokines (derived from adipocytes) and cytokines (derived from adipose tissue macrophages). SUBJECTS AND METHODS: We used protein array to measure the secretion of adipokines and cytokines after a 24-h culture of human subcutaneous adipose tissue pieces treated or not with a physiological concentration of ANP. The effect of ANP on protein secretion was also directly studied on isolated adipocytes and macrophages. Gene expression was measured by real-time RT-quantitative PCR. RESULTS: ANP decreased the secretion of the pro-inflammatory cytokines IL-6 and TNF-alpha, of several chemokines, and of the adipokines leptin and retinol-binding protein-4 (RBP-4). The secretion of the anti-inflammatory molecules IL-10 and adiponectin remained unaffected. The cytokines were mainly expressed in macrophages that expressed all components of the ANP-dependent signalling pathway. The adipokines, leptin, adiponectin and RBP-4 were specifically expressed in mature adipocytes. ANP directly inhibited the secretion of IL-6 and monocyte chemoattractant protein-1 by macrophages. The inhibitory effects of ANP on leptin and growth-related oncogene-alpha secretions were not seen under selective hormone-sensitive lipase inhibition. CONCLUSIONS/INTERPRETATION: We suggest that ANP, either by direct action on adipocytes and macrophages or through activation of adipocyte hormone-sensitive lipase, inhibits the secretion of factors involved in inflammation and insulin resistance
    corecore