4,171 research outputs found

    One Loop Renormalization of the Littlest Higgs Model

    Get PDF
    In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.Comment: 23 pages, 17 eps figure

    Asymptotics of relative heat traces and determinants on open surfaces of finite area

    Full text link
    The goal of this paper is to prove that on surfaces with asymptotically cusp ends the relative determinant of pairs of Laplace operators is well defined. We consider a surface with cusps (M,g) and a metric h on the surface that is a conformal transformation of the initial metric g. We prove the existence of the relative determinant of the pair (Δh,Δg)(\Delta_{h},\Delta_{g}) under suitable conditions on the conformal factor. The core of the paper is the proof of the existence of an asymptotic expansion of the relative heat trace for small times. We find the decay of the conformal factor at infinity for which this asymptotic expansion exists and the relative determinant is defined. Following the paper by B. Osgood, R. Phillips and P. Sarnak about extremal of determinants on compact surfaces, we prove Polyakov's formula for the relative determinant and discuss the extremal problem inside a conformal class. We discuss necessary conditions for the existence of a maximizer.Comment: This is the final version of the article before it gets published. 51 page

    Collective Quartics from Simple Groups

    Get PDF
    This article classifies Little Higgs models that have collective quartic couplings. There are two classes of collective quartics: Special Cosets and Special Quartics. After taking into account dangerous singlets, the smallest Special Coset models are SU(5)/SO(5) and SU(6)/Sp(6). The smallest Special Quartic model is SU(5)/SU(3) x SU(2) x U(1) and has not previously been considered as a candidate Little Higgs model.Comment: 22 pages, 2 figure

    Compact Stars - How Exotic Can They Be?

    Full text link
    Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadrons and quarks in a unified approach, will be discussed. Special attention will be given to high-density matter as it occurs in neutron stars. Given the current observational limits for neutron star masses, the properties of hyperonic and hybrid stars will be determined. In this context especially the question of the extent, to which exotic particles like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held in Boppard (Germany), May 201

    Theoretical Constraints on the Higgs Effective Couplings

    Full text link
    We derive constraints on the sign of couplings in an effective Higgs Lagrangian using prime principles such as the naturalness principle, global symmetries, and unitarity. Specifically, we study four dimension-six operators, O_H, O_y, O_g, and O_gamma, which contribute to the production and decay of the Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming the Higgs is a fundamental scalar, we find: 1) the coefficient of O_H is positive except when there are triplet scalars, resulting in a reduction in the Higgs on-shell coupling from their standard model (SM) expectations if no other operators contribute, 2) the linear combination of O_H and O_y controlling the overall Higgs coupling to fermion is always reduced, 3) the sign of O_g induced by a new colored fermion is such that it interferes destructively with the SM top contribution in the gluon fusion production of the Higgs, if the new fermion cancels the top quadratic divergence in the Higgs mass, and 4) the correlation between naturalness and the sign of O_gamma is similar to that of O_g, when there is a new set of heavy electroweak gauge bosons. Next considering a composite scalar for the Higgs, we find the reduction in the on-shell Higgs couplings persists. If further assuming a collective breaking mechanism as in little Higgs theories, the coefficient of O_H remains positive even in the presence of triplet scalars. In the end, we conclude that the gluon fusion production of the Higgs boson is reduced from the SM rate in all composite Higgs models. Our study suggests a wealth of information could be revealed by precise measurements of the Higgs couplings, providing strong motivations for both improving on measurements at the LHC and building a precision machine such as the linear collider.Comment: 37 pages, one figure; v2: improved discussion on dispersion relation and other minor modifications; version accepted for publication

    Cyberbullying and eating disorder symptoms in US early adolescents

    Get PDF
    Objective: The objective of this study was to determine the association between cyberbullying and eating disorder symptoms in a national sample of 10–14-year-old early adolescents. / Method: We analyzed cross-sectional data from the Adolescent Brain Cognitive Development (ABCD) Study (Year 2, 2018–2020, N = 10,258/11,875, 49% female, 46% non-White). Data were collected using multi-stage probability sampling. Modified Poisson regression analyses examined the association between cyberbullying and self-reported eating disorder symptoms based on the Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS-5). / Results: Cyberbullying victimization was associated with worry about weight gain (prevalence ratio [PR] 2.41, 95% confidence interval [CI] 1.48–3.91), self-worth tied to weight (PR 2.08, 95% CI 1.33–3.26), inappropriate compensatory behavior to prevent weight gain (PR 1.95, 95% CI 1.57–2.42), binge eating (PR 1.95, 95% CI 1.59–2.39), and distress with binge eating (PR 2.64, 95% CI 1.94–3.59), in models adjusting for potential confounders. Cyberbullying perpetration was associated with worry about weight gain (PR 3.52, 95% CI 1.19–10.37), self-worth tied to weight (PR 5.59, 95% CI 2.56–12.20), binge eating (PR 2.36, 95% CI 1.44–3.87), and distress with binge eating (PR 2.84, 95% CI 1.47–5.49). / Discussion: Cyberbullying victimization and perpetration in early adolescence are associated with eating disorder symptoms. Clinicians may consider assessing for cyberbullying and eating disorder symptoms in early adolescence and provide anticipatory guidance. / Public Significance Statement: Eating disorders often onset in adolescence and have among the highest mortality rates of any psychiatric disorder. In addition, cyberbullying has increased in prevalence among adolescents and significantly impacts mental health. In a national study of early adolescents, we found that cyberbullying victimization and perpetration are associated with eating disorder symptoms. Screening for and providing anticipatory guidance on cyberbullying and eating disorder symptoms in early adolescents may be warranted

    Top Partner Discovery in the T→tZT\to tZ channel at the LHC

    Get PDF
    In this paper we study the discovery potential of the LHC run II for heavy vector-like top quarks in the decay channel to a top and a ZZ boson. Despite the usually smaller branching ratio compared to charged-current decays, this channel is rather clean and allows for a complete mass reconstruction of the heavy top. The latter is achieved in the leptonic decay channel of the ZZ boson and in the fully hadronic top channel using boosted jet and jet substructure techniques. To be as model-independent as possible, a simplified model approach with only two free parameters has been applied. The results are presented in terms of parameter space regions for 3σ3\sigma evidence or 5σ5\sigma discovery for such new states in that channel.Comment: 24 pages, 8 figures, version 2 updated to JHEP 01 (2015) 08

    Multi-Photon Signals from Composite Models at LHC

    Full text link
    We analyze the collider signals of composite scalars that emerge in certain little Higgs models and models of vectorlike confinement. Similar to the decay of the pion into photon pairs, these scalars mainly decay through anomaly-induced interactions into electroweak gauge bosons, leading to a distinct signal with three or more photons in the final state. We study the standard model backgrounds for these signals, and find that the LHC can discover these models over a large range of parameter space with 30 fb−1^{-1} at 14 TeV. An early discovery at the current 7 TeV run is possible in some regions of parameter space. We also discuss possibilities to measure the spin of the particles in the γγ\gamma \gamma and ZγZ\gamma decay channels.Comment: 18 pages, LaTe

    Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China

    Get PDF
    The association between solar activity and Asian monsoon (AM) remains unclear. Here we evaluate the possible connection between them based on a precisely-dated, high-resolution speleothem oxygen isotope record from Dongge Cave, southwest China during the past 4.2 thousand years (ka). Without being adjusted chronologically to the solar signal, our record shows a distinct peak-to-peak correlation with cosmogenic nuclide 14C, total solar irradiance (TSI) and sunspot number (SN) at multi-decadal to centennial timescales. Further cross-wavelet analyses between our calcite δ18O and atmospheric 14C show statistically strong coherence at three typical periodicities of ~80, 200 and 340 years, suggesting important roles of solar activities in modulating AM changes at those timescales. Our result has further indicated a better correlation between our calcite δ18O record and atmospheric 14C than between our record and TSI. This better correlation may imply that the Sun–monsoon connection is dominated most likely by cosmic rays and oceanic circulation (both associated to atmospheric 14C), instead of the direct solar heating (TSI)

    Global parameter search reveals design principles of the mammalian circadian clock

    Get PDF
    Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours. Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment. Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the robustness and phase resetting properties of the mammalian clock, even at the single neuron level
    • …
    corecore