191 research outputs found

    Female social and sexual interest across the menstrual cycle: the roles of pain, sleep and hormones

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although research suggests that socio-sexual behavior changes in conjunction with the menstrual cycle, several potential factors are rarely taken into consideration. We investigated the role of changing hormone concentrations on self-reported physical discomfort, sleep, exercise and socio-sexual interest in young, healthy women.</p> <p>Methods</p> <p>Salivary hormones (dehydroepiandrosterone sulfate-DHEAS, progesterone, cortisol, testosterone, estradiol and estriol) and socio-sexual variables were measured in 20 women taking oral contraceptives (OC group) and 20 not using OCs (control group). Outcome measures were adapted from questionnaires of menstrual cycle-related symptoms, physical activity, and interpersonal relations. Testing occurred during menstruation (T1), mid-cycle (T2), and during the luteal phase (T3). Changes in behavior were assessed across time points and between groups. Additionally, correlations between hormones and socio-behavioral characteristics were determined.</p> <p>Results</p> <p>Physical discomfort and sleep disturbances peaked at T1 for both groups. Exercise levels and overall socio-sexual interest did not change across the menstrual cycle for both groups combined. However, slight mid-cycle increases in general and physical attraction were noted among the control group, whereas the OC group experienced significantly greater socio-sexual interest across all phases compared to the control group. Associations with hormones differed by group and cycle phase. The estrogens were correlated with socio-sexual and physical variables at T1 and T3 in the control group; whereas progesterone, cortisol, and DHEAS were more closely associated with these variables in the OC group across test times. The direction of influence further varies by behavior, group, and time point. Among naturally cycling women, higher concentrations of estradiol and estriol are associated with lower attraction scores at T1 but higher scores at T3. Among OC users, DHEAS and progesterone exhibit opposing relationships with attraction scores at T1 and invert at T3.</p> <p>Conclusions</p> <p>Data from this study show no change across the cycle in socio-sexual interest among healthy, reproductive age women but higher social and physical attraction among OC users. Furthermore, a broader range of hormones may be associated with attraction than previously thought. Such relationships differ by use of oral contraceptives, and may either reflect endogenous hormone modulation by OCs and/or self-selection of sexually active women to practice contraceptive techniques.</p

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Cannabidiol Reduces Intestinal Inflammation through the Control of Neuroimmune Axis

    Get PDF
    Enteric glial cells (EGC) actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine. Cannabidiol (CBD) is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects. Therefore the rationale of our study was to investigate the effect of CBD on intestinal biopsies from patients with ulcerative colitis (UC) and from intestinal segments of mice with LPS-induced intestinal inflammation. CBD markedly counteracted reactive enteric gliosis in LPS-mice trough the massive reduction of astroglial signalling neurotrophin S100B. Histological, biochemical and immunohistochemical data demonstrated that S100B decrease was associated with a considerable decrease in mast cell and macrophages in the intestine of LPS-treated mice after CBD treatment. Moreover the treatment of LPS-mice with CBD reduced TNF-α expression and the presence of cleaved caspase-3. Similar results were obtained in ex vivo cultured human derived colonic biopsies. In biopsies of UC patients, both during active inflammation and in remission stimulated with LPS+INF-γ, an increased glial cell activation and intestinal damage were evidenced. CBD reduced the expression of S100B and iNOS proteins in the human biopsies confirming its well documented effect in septic mice. The activity of CBD is, at least partly, mediated via the selective PPAR-gamma receptor pathway. CBD targets enteric reactive gliosis, counteracts the inflammatory environment induced by LPS in mice and in human colonic cultures derived from UC patients. These actions lead to a reduction of intestinal damage mediated by PPARgamma receptor pathway. Our results therefore indicate that CBD indeed unravels a new therapeutic strategy to treat inflammatory bowel diseases

    Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation

    Get PDF
    Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs.In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay.EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control.These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH

    Novel Photosensitizers Trigger Rapid Death of Malignant Human Cells and Rodent Tumor Transplants via Lipid Photodamage and Membrane Permeabilization

    Get PDF
    BACKGROUND: Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities. METHODOLOGY/PRINCIPAL FINDINGS: Our novel derivatives of chlorin e(6), that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e(6) against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3-4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e(6) in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers. CONCLUSIONS/SIGNIFICANCE: The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage

    Diet, physical exercise and cognitive behavioral training as a combined workplace based intervention to reduce body weight and increase physical capacity in health care workers - a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health care workers comprise a high-risk workgroup with respect to deterioration and early retirement. There is high prevalence of obesity and many of the workers are overweight. Together, these factors play a significant role in the health-related problems within this sector. The present study evaluates the effects of the first 3-months of a cluster randomized controlled lifestyle intervention among health care workers. The intervention addresses body weight, general health variables, physical capacity and musculoskeletal pain.</p> <p>Methods</p> <p>98 female, overweight health care workers were cluster-randomized to an intervention group or a reference group. The intervention consisted of an individually dietary plan with an energy deficit of 1200 kcal/day (15 min/hour), strengthening exercises (15 min/hour) and cognitive behavioral training (30 min/hour) during working hours 1 hour/week. Leisure time aerobic fitness was planned for 2 hour/week. The reference group was offered monthly oral presentations. Body weight, BMI, body fat percentage (bioimpedance), waist circumference, blood pressure, musculoskeletal pain, maximal oxygen uptake (maximal bicycle test), and isometric maximal muscle strength of 3 body regions were measured before and after the intervention period.</p> <p>Results</p> <p>In an intention-to-treat analysis from pre to post tests, the intervention group significantly reduced body weight with 3.6 kg (p < 0.001), BMI from 30.5 to 29.2 (p < 0.001), body fat percentage from 40.9 to 39.3 (p < 0.001), waist circumference from 99.7 to 95.5 cm (p < 0.001) and blood pressure from 134/85 to 127/80 mmHg (p < 0.001), with significant difference between the intervention and control group (p < 0.001) on all measures. No effect of intervention was found in musculoskeletal pain, maximal oxygen uptake and muscle strength, but on aerobic fitness.</p> <p>Conclusion</p> <p>The significantly reduced body weight, body fat, waist circumference and blood pressure as well as increased aerobic fitness in the intervention group show the great potential of workplace health promotion among this high-risk workgroup. Long-term effects of the intervention remain to be investigated.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01015716">NCT01015716</a></p

    IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.

    Get PDF
    Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity

    Chemosensory Cues to Conspecific Emotional Stress Activate Amygdala in Humans

    Get PDF
    Alarm substances are airborne chemical signals, released by an individual into the environment, which communicate emotional stress between conspecifics. Here we tested whether humans, like other mammals, are able to detect emotional stress in others by chemosensory cues. Sweat samples collected from individuals undergoing an acute emotional stressor, with exercise as a control, were pooled and presented to a separate group of participants (blind to condition) during four experiments. In an fMRI experiment and its replication, we showed that scanned participants showed amygdala activation in response to samples obtained from donors undergoing an emotional, but not physical, stressor. An odor-discrimination experiment suggested the effect was primarily due to emotional, and not odor, differences between the two stimuli. A fourth experiment investigated behavioral effects, demonstrating that stress samples sharpened emotion-perception of ambiguous facial stimuli. Together, our findings suggest human chemosensory signaling of emotional stress, with neurobiological and behavioral effects

    Immunosenescence and lymphomagenesis

    Get PDF
    One of the most important determinants of aging-related changes is a complex biological process emerged recently and called \u201cimmunosenescence\u201d. Immunosenescence refers to the inability of an aging immune system to produce an appropriate and effective response to challenge. This immune dysregulation may manifest as increased susceptibility to infection, cancer, autoimmune disease, and vaccine failure. At present, the relationship between immunosenescence and lymphoma in elderly patients is not defined in a satisfactory way. This review presents a brief overview of the interplay between aging, cancer and lymphoma, and the key topic of immunosenescence is addressed in the context of two main lymphoma groups, namely Non Hodgkin Lymphoma (NHL) and Hodgkin Lymphoma (HL). Epstein Barr Virus (EBV) plays a central role in the onset of neoplastic lymphoproliferation associated with immunological changes in aging, although the pathophysiology varies vastly among different disease entities. The interaction between immune dysfunction, immunosenescence and Epstein Barr Virus (EBV) infection appears to differ between NHL and HL, as well as between NHL subtypes
    corecore