10 research outputs found
Novel methodology to discern predictors of remission and patterns of disease activity over time using rheumatoid arthritis clinical trials data
Objectives To identify predictors of remission and disease activity patterns in patients with rheumatoid arthritis (RA) using individual participant data (IPD) from clinical trials. Methods Phases II and III clinical trials completed between 2002 and 2012 were identified by systematic literature review and contact with UK market authorisation holders. Anonymised baseline and follow-up IPD from non-biological arms were amalgamated. Multiple imputation was used to handle missing outcome and covariate information. Random effects logistic regression was used to identify predictors of remission, measured by the DAS28 score at 6 months. Novel latent class mixed models characterised DAS28 over time.Results IPD of 3290 participants from 18 trials were included. Of these participants, 92% received methotrexate (MTX). Remission rates were estimated at 8.4% (95%CI: 7.4%-9.5%) overall, 17% (95%CI: 14.8%-19.4%) for MTX-naïve early RA patients, and 3.2% (95%CI: 2.4%-4.3%) for those with prior MTX exposure at entry. In prior MTX-exposed patients, lower baseline DAS28 and MTX-re-initiation were associated with remission. In MTX-naïve patients, being young, white, male, with better functional and mental health, lower baseline DAS28 and receiving concomitant glucocorticoids were associated with remission. Three DAS28 trajectory sub-populations were identified in MTX-naïve and MTX-exposed patients. A number of variables were associated with sub-population membership and DAS28 levels within sub-populations. Conclusions Predictors of remission differed between MTX-naïve and prior MTX-exposed patients at entry. Latent class mixed models supported differential non-biologic therapy response, with three distinct trajectories observed in both MTX-naïve and MTX-exposed patients. Findings should be useful when designing future RA trials and interpreting results of biomarker studies. <br/
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed
comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data
will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of
targeted therapies for RA
Towards stratified treatment of JIA: machine learning identifies subtypes in response to methotrexate from four UK cohorts
BACKGROUND: Methotrexate (MTX) is the gold-standard first-line disease-modifying anti-rheumatic drug for juvenile idiopathic arthritis (JIA), despite only being either effective or tolerated in half of children and young people (CYP). To facilitate stratified treatment of early JIA, novel methods in machine learning were used to i) identify clusters with distinct disease patterns following MTX initiation; ii) predict cluster membership; and iii) compare clusters to existing treatment response measures. METHODS: Discovery and verification cohorts included CYP who first initiated MTX before January 2018 in one of four UK multicentre prospective cohorts of JIA within the CLUSTER consortium. JADAS components (active joint count, physician (PGA) and parental (PGE) global assessments, ESR) were recorded at MTX start and over the following year. Clusters of MTX ‘response’ were uncovered using multivariate group-based trajectory modelling separately in discovery and verification cohorts. Clusters were compared descriptively to ACR Pedi 30/90 scores, and multivariate logistic regression models predicted cluster-group assignment. FINDINGS: The discovery cohorts included 657 CYP and verification cohorts 1241 CYP. Six clusters were identified: Fast improvers (11%), Slow Improvers (16%), Improve-Relapse (7%), Persistent Disease (44%), Persistent PGA (8%) and Persistent PGE (13%), the latter two characterised by improvement in all features except one. Factors associated with clusters included ethnicity, ILAR category, age, PGE, and ESR scores at MTX start, with predictive model area under the curve values of 0.65–0.71. Singular ACR Pedi 30/90 scores at 6 and 12 months could not capture speeds of improvement, relapsing courses or diverging disease patterns. INTERPRETATION: Six distinct patterns following initiation of MTX have been identified using methods in artificial intelligence. These clusters demonstrate the limitations in traditional yes/no treatment response assessment (e.g., ACRPedi30) and can form the basis of a stratified medicine programme in early JIA. FUNDING: Medical Research Council, Versus Arthritis, Great Ormond Street Hospital Children's Charity, Olivia’s Vision, and the National Institute for Health Research
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
The RA-MAP Consortium:A working model for academia-industry collaboration
Collaboration can be challenging; nevertheless, the emerging successes of large, multi-partner, multi-national cooperatives and research networks in the biomedical sector have sustained the appetite of academics and industry partners for developing and fostering new research consortia. This model has percolated down to national funding agencies across the globe, leading to funding for projects that aim to realise the true potential of genomic medicine in the 21st century and to reap the rewards of 'big data'. In this Perspectives article, the experiences of the RA-MAP consortium, a group of more than 140 individuals affiliated with 21 academic and industry organizations that are focused on making genomic medicine in rheumatoid arthritis a reality are described. The challenges of multi-partner collaboration in the UK are highlighted and wide-ranging solutions are offered that might benefit large research consortia around the world.</p
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
AbstractRheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</jats:p
