39,560 research outputs found
Predicting the magnetospheric plasma of weather
The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed
A universal quantum circuit for two-qubit transformations with three CNOT gates
We consider the implementation of two-qubit unitary transformations by means
of CNOT gates and single-qubit unitary gates. We show, by means of an explicit
quantum circuit, that together with local gates three CNOT gates are necessary
and sufficient in order to implement an arbitrary unitary transformation of two
qubits. We also identify the subset of two-qubit gates that can be performed
with only two CNOT gates.Comment: 3 pages, 7 figures. One theorem, one author and references added.
Change of notational conventions. Minor correction in Theorem
Singlet Model Interference Effects with High Scale UV Physics
One of the simplest extensions of the Standard Model (SM) is the addition of
a scalar gauge singlet, S. If S is not forbidden by a symmetry from mixing with
the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs
production and decays. In general, there could also be unknown high energy
physics that generates additional effective low energy interactions. We show
that interference effects between the scalar resonance of the singlet model and
the effective field theory (EFT) operators can have significant effects in the
Higgs sector. We examine a non- symmetric scalar singlet model and
demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on
high mass resonances, S, exhibit an interesting structure and possible large
cancellations of effects between the resonance contribution and the new EFT
interactions, that invalidate conclusions based on the renormalizable singlet
model alone.Comment: 18 pages, 7 figures; revised to emphasize the points of general
interest for heavy resonance searches at the LH
The use of genetic algorithms to maximize the performance of a partially lined screened room
This paper shows that it is possible to use genetic algorithms to optimize the layout of ferrite tile absorber in a partially lined screened enclosure to produce a "best" performance. The enclosure and absorber are modeled using TLM modeling techniques and the performance is determined by comparison with theoretical normalized site attenuation of free space. The results show that it is possible to cover just 80% of the surface of the enclosure with ferrite absorber and obtain a response which is within +/-4 dB of the free space response between 40 and 200 MHz
Text-Independent Speaker Verification Using 3D Convolutional Neural Networks
In this paper, a novel method using 3D Convolutional Neural Network (3D-CNN)
architecture has been proposed for speaker verification in the text-independent
setting. One of the main challenges is the creation of the speaker models. Most
of the previously-reported approaches create speaker models based on averaging
the extracted features from utterances of the speaker, which is known as the
d-vector system. In our paper, we propose an adaptive feature learning by
utilizing the 3D-CNNs for direct speaker model creation in which, for both
development and enrollment phases, an identical number of spoken utterances per
speaker is fed to the network for representing the speakers' utterances and
creation of the speaker model. This leads to simultaneously capturing the
speaker-related information and building a more robust system to cope with
within-speaker variation. We demonstrate that the proposed method significantly
outperforms the traditional d-vector verification system. Moreover, the
proposed system can also be an alternative to the traditional d-vector system
which is a one-shot speaker modeling system by utilizing 3D-CNNs.Comment: Accepted to be published in IEEE International Conference on
Multimedia and Expo (ICME) 201
- …