2,345 research outputs found

    Density Profile Measurements in LDX using Microwave Reflectometry

    Get PDF

    Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core

    Full text link
    A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 yr-1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with sidereal frequency 12.85 yr-1. We find, by Monte Carlo calculations, that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10,000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 yr-1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.Comment: 22 pages, 9 tables, 10 figure

    Notes on Properties of Holographic Matter

    Full text link
    Probe branes with finite worldvolume electric flux in the background created by a stack of Dp branes describe holographically strongly interacting fundamental matter at finite density. We identify two quantities whose leading low temperature behavior is independent of the dimensionality of the probe branes: specific heat and DC conductivity. This behavior can be inferred from the dynamics of the fundamental strings which provide a good description of the probe branes in the regime of low temperatures and finite densities. We also comment on the speed of sound on the branes and the temperature dependence of DC conductivity at vanishing charge density.Comment: 18 pages, 2 figures; v2: corrected error in Section 6, conclusions unchanged; v3: improved figures and added clarifying comment

    Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates

    Full text link
    Recent analyses of nuclear decay data show evidence of variations suggestive of a solar influence. Analyses of datasets acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both show evidence of an annual periodicity and of periodicities with sidereal frequencies in the neighborhood of 12.25 year^{-1} (at a significance level that we have estimated to be 10^{-17}). It is notable that this implied rotation rate is lower than that attributed to the solar radiative zone, suggestive of a slowly rotating solar core. This leads us to hypothesize that there may be an "inner tachocline" separating the core from the radiative zone, analogous to the "outer tachocline" that separates the radiative zone from the convection zone. The Rieger periodicity (which has a period of about 154 days, corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode oscillation with spherical-harmonic indices l=3, m=1, located in the outer tachocline. This suggests that we may test the hypothesis of a solar influence on nuclear decay rates by searching BNL and PTB data for evidence of a "Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The appropriate search band for such an oscillation is estimated to be 2.00-2.28 year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11 year^{-1}. We estimate that the probability of obtaining these results by chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected reference, and a corrected typ

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    Biharmonic pattern selection

    Full text link
    A new model to describe fractal growth is discussed which includes effects due to long-range coupling between displacements uu. The model is based on the biharmonic equation 4u=0\nabla^{4}u =0 in two-dimensional isotropic defect-free media as follows from the Kuramoto-Sivashinsky equation for pattern formation -or, alternatively, from the theory of elasticity. As a difference with Laplacian and Poisson growth models, in the new model the Laplacian of uu is neither zero nor proportional to uu. Its discretization allows to reproduce a transition from dense to multibranched growth at a point in which the growth velocity exhibits a minimum similarly to what occurs within Poisson growth in planar geometry. Furthermore, in circular geometry the transition point is estimated for the simplest case from the relation rL/e1/2r_{\ell}\approx L/e^{1/2} such that the trajectories become stable at the growing surfaces in a continuous limit. Hence, within the biharmonic growth model, this transition depends only on the system size LL and occurs approximately at a distance 60%60 \% far from a central seed particle. The influence of biharmonic patterns on the growth probability for each lattice site is also analysed.Comment: To appear in Phys. Rev. E. Copies upon request to [email protected]

    The Planck-LFI flight model composite waveguides

    Get PDF
    The Low Frequency Instrument on board the PLANCK satellite is designed to give the most accurate map ever of the CMB anisotropy of the whole sky over a broad frequency band spanning 27 to 77 GHz. It is made of an array of 22 pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between the two parts is made with rectangular Wave Guides. Considerations of different nature (thermal, electromagnetic and mechanical), imposed stringent requirements on the WGs characteristics and drove their design. From the thermal point of view, the WG should guarantee good insulation between the FEM and the BEM sections to avoid overloading the cryocooler. On the other hand it is essential that the signals do not undergo excessive attenuation through the WG. Finally, given the different positions of the FEM modules behind the focal surface and the mechanical constraints given by the surrounding structures, different mechanical designs were necessary. A composite configuration of Stainless Steel and Copper was selected to satisfy all the requirements. Given the complex shape and the considerable length (about 1.5-2 m), manufacturing and testing the WGs was a challenge. This work deals with the development of the LFI WGs, including the choice of the final configuration and of the fabrication process. It also describes the testing procedure adopted to fully characterize these components from the electromagnetic point of view and the space qualification process they underwent. Results obtained during the test campaign are reported and compared with the stringent requirements. The performance of the LFI WGs is in line with requirements, and the WGs were successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Studies of hot-water treatment and soil fumigation for control of root-knot in ginger

    Get PDF
    The root-knot nematodes Meloidogyne javanica (Trenh) and M. incognita (Kofoid and White) in ginger seed pieces were controlled without adverse effects on germination by hot water treatment at temperatures between 45°C and SS°C for times ranging from 50 to 10 min. Hot-water treatment would have little if any value as a routine treatment for crops intended for processing but could be combined with soil fumigation for the production of better quality planting material

    The VLBA Imaging and Polarimetry Survey at 5 GHz

    Get PDF
    We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We have also developed an algorithm to use each source's I image to automatically classify it as a point-like source, a core-jet, a compact symmetric object (CSO) candidate, or a complex source. The mean ratio of the polarized to total 5 GHz flux density for VIPS sources with detected polarized flux density ranges from 1% to 20% with a median value of about 5%. We have also found significant evidence that the directions of the jets in core-jet systems tend to be perpendicular to the electric vector position angles (EVPAs). The data is consistent with a scenario in which ~24% of the polarized core-jets have EVPAs that are anti-aligned with the directions of their jet components and which have a substantial amount of Faraday rotation. In addition to these initial results, plans for future follow-up observations are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap
    corecore