1,791 research outputs found

    A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans

    Get PDF
    Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a <i>Caenorhabditis elegans</i> metalloprotease gene, <i>nas-37</i>, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The <i>NAS-37</i> protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS- 37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, <i>Haemonchus contortus</i> molts by digesting a ring of cuticle at the tip of the nose. Incubating <i>Haemonchus</i> larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When <i>Haemonchus</i> cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the <i>Haemonchus</i> cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes

    Molecular ratchets - verification of the principle of detailed balance

    Full text link
    We argue that the recent experiments of Kelly et. al.(Angew. Chem. Int. Ed. Engl. 36, 1866 (1997)) on molecular ratchets, in addition to being in agreement with the second law of thermodynamics, is a test of the principle of detailed balance for the ratchet. We suggest new experiments, using an asymmetric ratchet, to further test the principle. We also point out methods involving a time variation of the temperature to to give it a directional motion

    Global Strings and the Aharonov-Bohm Effect

    Full text link
    When a fermion interacts with a global vortex or cosmic string a solenoidal "gauge" field is induced. This results in a non-trivial scattering cross-section. For scalars and non-relativistic fermions the cross-section is similar to that of Aharonov and Bohm, but with corrections. A cosmological example is compared to one in liquid He3^{3}-A and important differences are discovered.Comment: 11 pages, DAMTP 93-5

    Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations

    Full text link
    Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analyses techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (1999) can result in significant errors in the determination of the CME direction when the CME propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had an heliospheric deflection of less than 20deg as they propagated in the HI fields-of-view, which, we believe, validates this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic

    Axion-photon Couplings in Invisible Axion Models

    Get PDF
    We reexamine the axion-photon couplings in various invisible axion models motivated by the recent proposal of using optical interferometry at the ASST facility in the SSCL to search for axion. We illustrate that the assignment of U(1)PQU(1)_{PQ} charges for the fermion fields plays an important role in determining the couplings. Several simple non-minimal invisible axion models with suppressed and enhanced axion-photon couplings are constructed, respectively. We also discuss the implications of possible new experiments to detect solar axions by conversion to XX-rays in a static magnetic apparatus tracking the sun.Comment: 14 pages, LaTeX fil

    Structure of the icosahedral Ti-Zr-Ni quasicrystal

    Full text link
    The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined by invoking similarities to periodic crystalline phases, diffraction data and the results from ab initio calculations. The structure is modeled by decorations of the canonical cell tiling geometry. The initial decoration model is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1 approximant structure of the quasicrystal. The decoration model is optimized using a new method of structural analysis combining a least-squares refinement of diffraction data with results from ab initio calculations. The resulting structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration rule and structural details are discussed.Comment: 12 pages, 8 figure

    Axion Radiation from Strings

    Get PDF
    This paper revisits the problem of the string decay contribution to the axion cosmological energy density. We show that this contribution is proportional to the average relative increase when axion strings decay of a certain quantity NaxN_{\rm ax} which we define. We carry out numerical simulations of the evolution and decay of circular and non-circular string loops, of bent strings with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the case of string loops and of vortex-antivortex pairs, NaxN_{\rm ax} decreases by approximately 20%. In the case of bent strings, NaxN_{\rm ax} remains constant or increases slightly. Our results imply that the string decay contribution to the axion energy density is of the same order of magnitude as the well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure

    Finite temperature effects on the collapse of trapped Bose-Fermi mixtures

    Full text link
    By using the self-consistent Hartree-Fock-Bogoliubov-Popov theory, we present a detailed study of the mean-field stability of spherically trapped Bose-Fermi mixtures at finite temperature. We find that, by increasing the temperature, the critical particle number of bosons (or fermions) and the critical attractive Bose-Fermi scattering length increase, leading to a significant stabilization of the mixture.Comment: 5 pages, 4 figures; minor changes, proof version, to appear in Phys. Rev. A (Nov. 1, 2003

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow
    corecore