66,097 research outputs found
So what do we do with the rest of the day? Going beyond the pre-shot routine in professional golf
Optimally focused attention has been shown to be a key psychological characteristic for peak performance in golf; a feature commonly achieved with a pre-shot routine. However, research to date has yet to address how a golfer’s attention should best shift across the broader period of a whole game, or even including pre-event preparations, to support the pre-shot process and, ultimately, performance. Reflecting this knowledge gap, the present review aims to clarify current conceptual understanding and best practice against this wider perspective on attentional control, as well as highlight areas which must be considered for advances to be made. Specifically, research is required on the cognitive, behavioral, and temporal elements of routines used between shots and holes. Furthermore, to manage the attentional demands of the entire golf performance experience, such investigation also needs to explore the critical role of the support team and pre-tournament planning
Quarkonium spin structure in lattice NRQCD
Numerical simulations of the quarkonium spin splittings are done in the
framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading
order in the velocity expansion the spin splittings are of , where
is the renormalized quark mass and is the mean squared quark
velocity. A systematic analysis is done of all next-to-leading order
corrections. This includes the addition of relativistic
interactions, and the removal of discretization errors in the
leading-order interactions. Simulations are done for both S- and P-wave mesons,
with a variety of heavy quark actions and over a wide range of lattice
spacings. Two prescriptions for the tadpole improvement of the action are also
studied in detail: one using the measured value of the average plaquette, the
other using the mean link measured in Landau gauge. Next-to-leading order
interactions result in a very large reduction in the charmonium splittings,
down by about 60% from their values at leading order. There are further
indications that the velocity expansion may be poorly convergent for
charmonium. Prelimary results show a small correction to the hyperfine
splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include
Tadpole renormalization and relativistic corrections in lattice NRQCD
We make a comparison of two tadpole renormalization schemes in the context of
the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and
NRQCD actions are analyzed using the mean-link in Landau gauge, and
using the fourth root of the average plaquette . Simulations are done
for , , and systems. The hyperfine splittings are
computed both at leading and at next-to-leading order in the relativistic
expansion. Results are obtained at lattice spacings in the range of about
0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole
renormalization using . This includes much better scaling behavior of
the hyperfine splittings in the three quarkonium systems when is
used. We also find that relativistic corrections to the spin splittings are
smaller when is used, particularly for the and
systems. We also see signs of a breakdown in the NRQCD expansion when the bare
quark mass falls below about one in lattice units. Simulations with
also appear to be better behaved in this context: the bare quark masses turn
out to be larger when is used, compared to when is used on
lattices with comparable spacings. These results also demonstrate the need to
go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and
references
Precision Charmonium Spectroscopy From Lattice QCD
We present results for Charmonium spectroscopy using Non-Relativistic QCD
(NRQCD). For the NRQCD action the leading order spin-dependent and next to
leading order spin-independent interactions have been included with
tadpole-improved coefficients. We use multi-exponential fits to multiple
correlation functions to extract ground and excited states. Splittings
between the lowest , and states are given and we have accurate
values for the state hyperfine splitting and the fine structure.
Agreement with experiment is good - the remaining systematic errors are
discussed.Comment: 23 pages uuencoded latex file. Contains figures in late
Prospects for improved branching fractions
The experimental uncertainty on the branching fraction \b(\Lambda_c \to p
K^- \pi^+) = (5.0 \pm 1.3)% has not decreased since 1998, despite a much
larger data sample. Uncertainty in this quantity dominates that in many other
quantities, including branching fractions of to other modes,
branching fractions of -flavored baryons, and fragmentation fractions of
charmed and bottom quarks. Here we advocate a lattice QCD calculation of the
form factors in (the case
is simpler as the mass of the lepton can be neglected). Such a calculation
would yield an absolute prediction for the rate for . When combined with the lifetime, it could provide
a calibration for an improved set of branching fractions as long as
the accuracy exceeds about 25%.Comment: 8 pages, 2 figures, version to be published in Phys.\ Rev.\
Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD
We determine masses and decay constants of heavy-heavy and heavy-charm
pseudoscalar mesons as a function of heavy quark mass using a fully
relativistic formalism known as Highly Improved Staggered Quarks for the heavy
quark. We are able to cover the region from the charm quark mass to the bottom
quark mass using MILC ensembles with lattice spacing values from 0.15 fm down
to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and
f_{\eta_b} = 0.667(6) GeV. Our value for f_{\eta_b} is within a few percent of
f_{\Upsilon} confirming that spin effects are surprisingly small for heavyonium
decay constants. Our value for f_{B_c} is significantly lower than potential
model values being used to estimate production rates at the LHC. We discuss the
changing physical heavy-quark mass dependence of decay constants from
heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between
the three different systems confirms that the B_c system behaves in some ways
more like a heavy-light system than a heavy-heavy one. Finally we summarise
current results on decay constants of gold-plated mesons.Comment: 16 pages, 12 figure
- …