635 research outputs found
UNICEF IWASH Project, Northern Region, Ghana : an adapted training manual for groundwater development
This report is an adapted training manual, with specific best practice recommendations for
groundwater development practitioners working in the Northern Region, Ghana. It is designed to
be used in conjunction with the existing comprehensive training manual ‘Developing
Groundwater: a guide to rural water supply’ by MacDonald, Davies, Calow and Chilton (2005).
The additional guidelines provided in this supplementary report are specific to the Northern
Region of Ghana, and have been informed by a review of groundwater development in the
region which BGS carried out on behalf of UNICEF in 2010-2011.
The Northern Region is a difficult area in which to find and develop groundwater resources. For
this reason, more resources – time and money – need to be focussed on careful borehole siting
and development in order to maximise success. This includes detailed desk and field
reconnaissance surveys; the effective use and interpretation of geophysical siting methods;
collection of good quality data during drilling and test pumping; rigorous recording and
management of data; and effective interpretation, sharing and use of hydrogeological
information by all groundwater development practitioners. This report, and the associated
manual ‘Developing Groundwater’, provide practical help for carrying out these activities
effectively.
The authors gratefully acknowledge those persons who contributed to the formation of these
guidelines, who include:
UNICEF Ghana – Othniel Habila, Kabuka Banda and David Ede
Community Water and Sanitation Agency (CWSA), Ghana – John Aduakye
Canadian International Development Agency (CIDA) – Hydrogeological Assessment
Project (HAP) – James Racicot
All participants at the UNICEF/BGS workshop and training programme held in Tamale,
Northern Region, from 7 to 18 February 2011
Couplage diffusion d'humidité/ états mécaniques internes dans les polymères et composites - une approche thermodynamique
International audienceNous utilisons une approche thermodynamique, basée sur la définition du potentiel chimique de l'eau, pour établir un modèle couplant la diffusion de l'humidité aux états mécaniques d'un polymère. Le modèle permet de prendre en compte les évolutions, au cours du processus de diffusion, de la masse volumique du polymère et de la capacité maximale d'absorption d'humidité aux frontières. L'approche développée peut s'appliquer à des cas de chargement dissymétriques en termes d'humidité et de pression extérieure. Le modèle ainsi établi permet, entre autres, de prédire les profils de teneur en eau dans l'épaisseur du polymère, tout au long de la phase transitoire du processus de diffusion. Les résultats obtenus montrent l'effet considérable, induit par l'application d'une pression extérieure, sur la cinétique de diffusion de l'humidité dans les polymères
Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations
Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible
to derive the direction of propagation of coronal mass ejections (CMEs) in
addition to their speed with a variety of methods. For CMEs observed by both
STEREO spacecraft, it is possible to derive their direction using simultaneous
observations from the twin spacecraft and also, using observations from only
one spacecraft with fitting methods. This makes it possible to test and compare
different analyses techniques. In this article, we propose a new fitting method
based on observations from one spacecraft, which we compare to the commonly
used fitting method of Sheeley et al. (1999). We also compare the results from
these two fitting methods with those from two stereoscopic methods, focusing on
12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009.
We find evidence that the fitting method of Sheeley et al. (1999) can result in
significant errors in the determination of the CME direction when the CME
propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect
our new fitting method to be better adapted to the analysis of halo or limb
CMEs with respect to the observing spacecraft. We also find some evidence that
direct triangulation in the HI fields-of-view should only be applied to CMEs
propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line).
Last, we address one of the possible sources of errors of fitting methods: the
assumption of radial propagation. Using stereoscopic methods, we find that at
least seven of the 12 studied CMEs had an heliospheric deflection of less than
20deg as they propagated in the HI fields-of-view, which, we believe, validates
this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic
Pharmacokinetics and pharmacodynamics of topotecan administered daily for 5 days every 3 weeks
Topotecan is a novel semisynthetic derivative of the anticancer agent camptothecin and inhibits the intranuclear enzyme topoisomerase I. The lactone structure of topotecan, which is in equilibrium with the inactive ringopened hydroxy acid, is essential for this activity. The open form predominates at physiological pH. We performed a pharmacokinetic, study as part of a phase I study in patients with various types of soli
Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts
The NASA STEREO mission opened up the possibility to forecast the arrival
times, speeds and directions of solar transients from outside the Sun-Earth
line. In particular, we are interested in predicting potentially geo-effective
Interplanetary Coronal Mass Ejections (ICMEs) from observations of density
structures at large observation angles from the Sun (with the STEREO
Heliospheric Imager instrument). We contribute to this endeavor by deriving
analytical formulas concerning a geometric correction for the ICME speed and
arrival time for the technique introduced by Davies et al. (2012, ApJ, in
press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a
circle propagates outward, along a plane specified by a position angle (e.g.
the ecliptic), with constant angular half width (lambda). This is an extension
to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and
Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage
that it is possible to assess clearly, in contrast to previous models, if a
particular location in the heliosphere, such as a planet or spacecraft, might
be expected to be hit by the ICME front. Our correction formulas are especially
significant for glancing hits, where small differences in the direction greatly
influence the expected speeds (up to 100-200 km/s) and arrival times (up to two
days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the
geometric correction becomes very similar to the one derived by M\"ostl et al.
(2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic
expressions can also be used for empirical or analytical models to predict the
1 AU arrival time of an ICME by correcting for effects of hits by the flank
rather than the apex, if the width and direction of the ICME in a plane are
known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics
Voltage-tunable singlet-triplet transition in lateral quantum dots
Results of calculations and high source-drain transport measurements are
presented which demonstrate voltage-tunable entanglement of electron pairs in
lateral quantum dots. At a fixed magnetic field, the application of a
judiciously-chosen gate voltage alters the ground-state of an electron pair
from an entagled spin singlet to a spin triplet.Comment: 8.2 double-column pages, 10 eps figure
Familial influences on sustained attention and inhibition in preschoolers
Background: In this study several aspects of attention were studied in 237 nearly 6-year-old twin pairs. Specifically, the ability to sustain attention and inhibition were investigated using a computerized test battery (Amsterdam Neuropsychological Tasks). Furthermore, the Teacher's Report Form (TRF) was filled out by the teacher of the child and the attention subscale of this questionnaire was analyzed. Methods: The variance in performance on the different tasks of the test battery and the score on the attention scale of the TRF were decomposed into a contribution of the additive effects of many genes (A), environmental effects that are shared by twins (C) and unique environmental influences not shared by twins (E) by using data from MZ and DZ twins. Results: The genetic model fitting results showed an effect of A and E for the attention scale of the TRF, and for some of the inhibition and sustained attention measures. For most of the attention variables, however, it was not possible to decide between a model with A and E or a model with C and E. Time-on-task effects on reaction time or number of errors and the delay after making an error did not show familial resemblances. A remarkable finding was that the heritability of the attention scale of the TRF was found to be higher than the heritability of indices that can be considered to be more direct measures of attention, such as mean tempo in the sustained attention task and response speed in the Go-NoGo task. Conclusion: In preschoolers, familial resemblances on sustained attention and inhibition were observed. © Association for Child Psychology and Psychiatry, 2004
Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images
The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods
to determine the average direction and velocity of coronal mass ejections
(CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such
as the HIs onboard the STEREO spacecraft. Both methods assume a constant
velocity in their descriptions of the time-elongation profiles of CMEs, which
are used to fit the observed time-elongation data. Here, we analyze the effect
of aerodynamic drag on CMEs propagating through interplanetary space, and how
this drag affects the result of the F\Phi and HM fitting methods. A simple drag
model is used to analytically construct time-elongation profiles which are then
fitted with the two methods. It is found that higher angles and velocities give
rise to greater error in both methods, reaching errors in the direction of
propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods,
respectively. This is due to the physical accelerations of the CMEs being
interpreted as geometrical accelerations by the fitting methods. Because of the
geometrical definition of the HM fitting method, it is affected by the
acceleration more greatly than the F\Phi fitting method. Overall, we find that
both techniques overestimate the initial (and final) velocity and direction for
fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that
arrival times at 1 AU would be predicted early (by up to 12 hours). We also
find that the direction and arrival time of a wide and decelerating CME can be
better reproduced by the F\Phi due to the cancellation of two errors:
neglecting the CME width and neglecting the CME deceleration. Overall, the
inaccuracies of the two fitting methods are expected to play an important role
in the prediction of CME hit and arrival times as we head towards solar maximum
and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page
Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008--2010: Lessons for Future Observations of Earth-Directed CMEs
We present a study of coronal mass ejections (CMEs) which impacted one of the
STEREO spacecraft between January 2008 and early 2010. We focus our study on 20
CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the
other STEREO spacecraft up to large heliocentric distances. We compare the
predictions of the Fixed-Phi and Harmonic Mean (HM) fitting methods, which only
differ by the assumed geometry of the CME. It is possible to use these
techniques to determine from remote-sensing observations the CME direction of
propagation, arrival time and final speed which are compared to in situ
measurements. We find evidence that for large viewing angles, the HM fitting
method predicts the CME direction better. However, this may be due to the fact
that only wide CMEs can be successfully observed when the CME propagates more
than 100 deg from the observing spacecraft. Overall eight CMEs, originating
from behind the limb as seen by one of the STEREO spacecraft can be tracked and
their arrival time at the other STEREO spacecraft can be successfully
predicted. This includes CMEs, such as the events on 4 December 2009 and 9
April 2010, which were viewed 130 deg away from their direction of propagation.
Therefore, we predict that some Earth-directed CMEs will be observed by the HIs
until early 2013, when the separation between Earth and one of the STEREO
spacecraft will be similar to the separation of the two STEREO spacecraft in
2009--2010.Comment: 21 pages, accepted to Solar Physic
- …