4,305 research outputs found
Perspective: How good is DFT for water?
Kohn-Sham density functional theory (DFT) has become established as an
indispensable tool for investigating aqueous systems of all kinds, including
those important in chemistry, surface science, biology and the earth sciences.
Nevertheless, many widely used approximations for the exchange-correlation (XC)
functional describe the properties of pure water systems with an accuracy that
is not fully satisfactory. The explicit inclusion of dispersion interactions
generally improves the description, but there remain large disagreements
between the predictions of different dispersion-inclusive methods. We present
here a review of DFT work on water clusters, ice structures and liquid water,
with the aim of elucidating how the strengths and weaknesses of different XC
approximations manifest themselves across this variety of water systems. Our
review highlights the crucial role of dispersion in describing the delicate
balance between compact and extended structures of many different water
systems, including the liquid. By referring to a wide range of published work,
we argue that the correct description of exchange-overlap interactions is also
extremely important, so that the choice of semi-local or hybrid functional
employed in dispersion-inclusive methods is crucial. The origins and
consequences of beyond-2-body errors of approximate XC functionals are noted,
and we also discuss the substantial differences between different
representations of dispersion. We propose a simple numerical scoring system
that rates the performance of different XC functionals in describing water
systems, and we suggest possible future developments
Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method
According to a recent proposal [S. Takayama et al., Appl. Phys. Lett. 87,
061107 (2005)], the triangular lattice of triangular air holes may allow to
achieve a complete photonic band gap in two-dimensional photonic crystal slabs.
In this work we present a systematic theoretical study of this photonic lattice
in a high-index membrane, and a comparison with the conventional triangular
lattice of circular holes, by means of the guided-mode expansion method whose
detailed formulation is described here. Photonic mode dispersion below and
above the light line, gap maps, and intrinsic diffraction losses of
quasi-guided modes are calculated for the periodic lattice as well as for line-
and point-defects defined therein. The main results are summarized as follows:
(i) the triangular lattice of triangular holes does indeed have a complete
photonic band gap for the fundamental guided mode, but the useful region is
generally limited by the presence of second-order waveguide modes; (ii) the
lattice may support the usual photonic band gap for even modes (quasi-TE
polarization) and several band gaps for odd modes (quasi-TM polarization),
which could be tuned in order to achieve doubly-resonant frequency conversion
between an even mode at the fundamental frequency and an odd mode at the
second-harmonic frequency; (iii) diffraction losses of quasi-guided modes in
the triangular lattices with circular and triangular holes, and in line-defect
waveguides or point-defect cavities based on these geometries, are comparable.
The results point to the interest of the triangular lattice of triangular holes
for nonlinear optics, and show the usefulness of the guided-mode expansion
method for calculating photonic band dispersion and diffraction losses,
especially for higher-lying photonic modes.Comment: 16 pages, 11 figure
Comparison of relativity theories with observer-independent scales of both velocity and length/mass
We consider the two most studied proposals of relativity theories with
observer-independent scales of both velocity and length/mass: the one discussed
by Amelino-Camelia as illustrative example for the original proposal
(gr-qc/0012051) of theories with two relativistic invariants, and an
alternative more recently proposed by Magueijo and Smolin (hep-th/0112090). We
show that these two relativistic theories are much more closely connected than
it would appear on the basis of a naive analysis of their original
formulations. In particular, in spite of adopting a rather different formal
description of the deformed boost generators, they end up assigning the same
dependence of momentum on rapidity, which can be described as the core feature
of these relativistic theories. We show that this observation can be used to
clarify the concepts of particle mass, particle velocity, and
energy-momentum-conservation rules in these theories with two relativistic
invariants.Comment: 21 pages, LaTex. v2: Andrea Procaccini (contributing some results
from hia Laurea thesis) is added to the list of authors and the paper
provides further elements of comparison between DSR1 and DSR2, including the
observation that both lead to the same formula for the dependence of momentum
on rapidit
Gambaran Jumlah Trombosit pada Pasien Kanker Serviks di RSU Dokter Soedarso Tahun 2011-2012
Latar Belakang: Rata Rata satu koma empat juta wanita di-seluruhdunia hidup dengan kanker serviks. Kanker serviks termasuk dari sepuluhbesar kanker penyebab kematian pada wanita di Indonesia. Hasilpenelitian terkini mengindikasikan adanya hubungan antara tingginyajumlah trombosit dengan prognosis yang buruk dari kanker sistemginekologi. Tujuan: Penelitian ini bertujuan mengetahui bagaimanagambaran jumlah trombosit pada pasien kanker serviks. Metodologi:Penelitian adalah penelitian deskriptif. Pengumpulan data dilakukan dibagian rekam medis RSU DOKTER SOEDARSO pada tanggal 25 Maretsampai 3 Mei 2013. Data dikumpulkan dari buku registrasi rawat inap danrawat jalan di poli obstetri dan ginekologi di RSU DOKTER SOEDARSO,sampel diambil secara consecutive sampling. Data dianalisis denganstatistik sederhana. Hasil: Ditemukan 39 sampel yang sesuai kriteriainklusi dan eksklusi dengan karakteristik sampel ; usia dengan 42 48tahun (35.9%), pekerjaan ibu rumah tangga (87.2%), dan stadium III/a(43.6%) adalah frekuensi yang tertinggi. Jumlah trombosit yang ditemukanpaling banyak adalah trombositosis (>400.000/ul) (64.1%). Rata-rata nilaitrombosit tertinggi yang ditemukan ada di stadium IV (592.000/ul).Kesimpulan: Distribusi jumlah trombosit terbanyak adalah trombositosis.Keadaan trombositosis mulai ditemukan pada stadium III/a. Nilai trombositmeningkat secara linier dengan stadium kanker serviks
Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system
Realistic, first-principles-based interatomic potentials have been used in
molecular dynamics simulations to study the effect of cation composition on the
ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical
properties to the degree of lattice disorder. Across the composition range,
this system retains a disordered fluorite crystal structure and the vacancy
concentration is constant. The observed trends of decreasing conductivity and
increasing disorder with increasing Nb5+ content were reproduced in simulations
with the cations randomly assigned to positions on the cation sublattice. The
trends were traced to the influences of the cation charges and relative sizes
and their effect on vacancy ordering by carrying out additional calculations in
which, for example, the charges of the cations were equalised. The simulations
did not, however, reproduce all the observed properties, particularly for
Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse
scattering features observed in small area electron diffraction studies were
not always reproduced. Consideration of these deficiencies led to a preliminary
attempt to characterise the consequence of partially ordering the cations on
their lattice, which significantly affects the propensity for vacancy ordering.
The extent and consequences of cation ordering seem to be much less pronounced
on the Zr2Y2O7 side of the composition range.Comment: 22 pages, 8 figures, submitted to Journal of Physics: Condensed
Matte
First principles simulations of liquid Fe-S under Earth's core conditions
First principles electronic structure calculations, based upon density
functional theory within the generalized gradient approximation and ultra-soft
Vanderbilt pseudopotentials, have been used to simulate a liquid alloy of iron
and sulfur at Earth's core conditions. We have used a sulfur concentration of
wt, in line with the maximum recent estimates of the sulfur
abundance in the Earth's outer core. The analysis of the structural, dynamical
and electronic structure properties has been used to report on the effect of
the sulfur impurities on the behavior of the liquid. Although pure sulfur is
known to form chains in the liquid phase, we have not found any tendency
towards polymerization in our liquid simulation. Rather, a net S-S repulsion is
evident, and we propose an explanation for this effect in terms of the
electronic structure. The inspection of the dynamical properties of the system
suggests that the sulfur impurities have a negligible effect on the viscosity
of Earth's liquid core.Comment: 24 pages (including 8 figures
Entanglement production in non-ideal cavities and optimal opacity
We compute analytically the distributions of concurrence
and squared norm for the production of electronic
entanglement in a chaotic quantum dot. The dot is connected to the external
world via one ideal and one partially transparent lead, characterized by the
opacity . The average concurrence increases with while the
average squared norm of the entangled state decreases, making it less likely to
be detected. When a minimal detectable norm is required,
the average concurrence is maximal for an optimal value of the opacity
which is explicitly computed as a function
of . If is larger than the critical
value , the average entanglement
production is maximal for the completely ideal case, a direct consequence of an
interesting bifurcation effect.Comment: 4 pages, 4 figures + supplementary material with one figure. Major
revisions. Title and abstract changed. arXiv admin note: text overlap with
arXiv:0712.0623 by other author
Supersymmetric AdS_5 solutions of M-theory
We analyse the most general supersymmetric solutions of D=11 supergravity
consisting of a warped product of five-dimensional anti-de-Sitter space with a
six-dimensional Riemannian space M_6, with four-form flux on M_6. We show that
M_6 is partly specified by a one-parameter family of four-dimensional Kahler
metrics. We find a large family of new explicit regular solutions where M_6 is
a compact, complex manifold which is topologically a two-sphere bundle over a
four-dimensional base, where the latter is either (i) Kahler-Einstein with
positive curvature, or (ii) a product of two constant-curvature Riemann
surfaces. After dimensional reduction and T-duality, some solutions in the
second class are related to a new family of Sasaki-Einstein spaces which
includes T^{1,1}/Z_2. Our general analysis also covers warped products of
five-dimensional Minkowski space with a six-dimensional Riemannian space.Comment: 40 pages. v2: minor changes, eqs. (2.22) and (D.12) correcte
- …