1,366 research outputs found

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape

    The Moyal Bracket in the Coherent States framework

    Full text link
    The star product and Moyal bracket are introduced using the coherent states corresponding to quantum systems with non-linear spectra. Two kinds of coherent state are considered. The first kind is the set of Gazeau-Klauder coherent states and the second kind are constructed following the Perelomov-Klauder approach. The particular case of the harmonic oscillator is also discussed.Comment: 13 page

    Statistical properties of Klauder-Perelomov coherent states for the Morse potential

    Full text link
    We present in this paper a realistic construction of the coherent states for the Morse potential using the Klauder-Perelomov approach . We discuss the statistical properties of these states, by deducing the Q- and P-distribution functions. The thermal expectations for the quantum canonical ideal gas of the Morse oscillators are also calculated

    Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors

    Full text link
    A new family of relaxor dielectrics with the tetragonal tungsten bronze structure (nominal composition Ba6M3+Nb9O30, M3+ = Ga, Sc or In) were studied using dielectric spectroscopy to probe the dynamic dipole response and correlate this with the crystal structure as determined from powder neutron diffraction. Independent analyses of real and imaginary parts of the complex dielectric function were used to determine characteristic temperature parameters, TVF, and TUDR, respectively. In each composition both these temperatures correlated with the temperature of maximum crystallographic strain, Tc/a determined from diffraction data. The overall behaviour is consistent with dipole freezing and the data indicate that the dipole stability increases with increasing M3+ cation size as a result of increased tetragonality of the unit cell. Crystallographic data suggests that these materials are uniaxial relaxors with the dipole moment predominantly restricted to the B1 cation site in the structure. Possible origins of the relaxor behaviour are discussed.Comment: Main article 32 pages, 8 figures; Supplementary data 24 pages, 4 figure

    Generalized Intelligent States for an Arbitrary Quantum System

    Full text link
    Generalized Intelligent States (coherent and squeezed states) are derived for an arbitrary quantum system by using the minimization of the so-called Robertson-Schr\"odinger uncertainty relation. The Fock-Bargmann representation is also considered. As a direct illustration of our construction, the P\"oschl-Teller potentials of trigonometric type will be shosen. We will show the advantage of the Fock-Bargmann representation in obtaining the generalized intelligent states in an analytical way. Many properties of these states are studied

    Symplectic Fluctuations for Electromagnetic Excitations of Hall Droplets

    Full text link
    We show that the integer quantum Hall effect systems in plane, sphere or disc, can be formulated in terms of an algebraic unified scheme. This can be achieved by making use of a generalized Weyl--Heisenberg algebra and investigating its basic features. We study the electromagnetic excitation and derive the Hamiltonian for droplets of fermions on a two-dimensional Bargmann space (phase space). This excitation is introduced through a deformation (perturbation) of the symplectic structure of the phase space. We show the major role of Moser's lemma in dressing procedure, which allows us to eliminate the fluctuations of the symplectic structure. We discuss the emergence of the Seiberg--Witten map and generation of an abelian noncommutative gauge field in the theory. As illustration of our model, we give the action describing the electromagnetic excitation of a quantum Hall droplet in two-dimensional manifold.Comment: 23 page

    Muon spin rotation and neutron scattering study of the non-centrosymmetric tetragonal compound CeAuAl3

    Get PDF
    We have investigated the non-centrosymmetric tetragonal heavy-fermion compound CeAuAl3 using muon spin rotation (muSR), neutron diffraction (ND) and inelastic neutron scattering (INS) measurements. We have also revisited the magnetic, transport and thermal properties. The magnetic susceptibility reveals an antiferromagnetic transition at 1.1 K with a possibility of another magnetic transition near 0.18 K. The heat capacity shows a sharp lambda-type anomaly at 1.1 K in zero-filed, which broadens and moves to higher temperature in applied magnetic field. Our zero-field muSR and ND measurements confirm the existence of a long-range magnetic ground state below 1.2 K. Further the ND study reveals an incommensurate magnetic ordering with a magnetic propagation vector k = (0, 0, 0.52) and a spiral structure of Ce moments coupled ferromagnetically within the ab-plane. Our INS study reveals the presence of two well-defined crystal electric field (CEF) excitations at 5.1 meV and 24.6 meV in the paramagnetic phase of CeAuAl3 which can be explained on the basis of the CEF theory. Furthermore, low energy quasi-elastic excitations show a Gaussian line shape below 30 K compared to a Lorentzian line shape above 30 K, indicating a slowdown of spin fluctuation below 30 K. We have estimated a Kondo temperature of TK=3.5 K from the quasi-elastic linewidth, which is in good agreement with that estimated from the heat capacity. This study also indicates the absence of any CEF-phonon coupling unlike that observed in isostructural CeCuAl3. The CEF parameters, energy level scheme and their wave functions obtained from the analysis of INS data explain satisfactorily the single crystal susceptibility in the presence of two-ion anisotropic exchange interaction in CeAuAl3.Comment: 28 pages and 17 figure

    Magnetic order and the electronic ground state in the pyrochlore iridate Nd2Ir2O7

    Full text link
    We report a combined muon spin relaxation/rotation, bulk magnetization, neutron scattering, and transport study of the electronic properties of the pyrochlore iridate Nd2Ir2O7. We observe the onset of strongly hysteretic behavior in the temperature dependent magnetization below 120 K, and an abrupt increase in the temperature dependent resistivity below 8 K. Zero field muon spin relaxation measurements show that the hysteretic magnetization is driven by a transition to a magnetically disordered state, and that below 8 K a complex magnetically ordered ground state sets in, as evidenced by the onset of heavily damped spontaneous muon precession. Our measurements point toward the absence of a true metal-to-insulator phase transition in this material and suggest that Nd2Ir2O7 lies either within or on the metallic side of the boundary of the Dirac semimetal regime within its topological phase diagram.Comment: 21 pages, 7 figure

    Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction

    Full text link
    Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors k'Cl ~ -0.150,0.422,1/2 and k'Br ~ -0.172,0.356,1/2 and stable below TN=18 K for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins on each tetrahedron which rotates on a helix from cell to cell following the propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB, is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure of the chloride associated with the wave-vector k' differs from that determined previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev. Lett. 93, 217206 (2004)]

    Representations and Properties of Generalized ArA_r Statistics, Coherent States and Robertson Uncertainty Relations

    Full text link
    The generalization of ArA_r statistics, including bosonic and fermionic sectors, is performed by means of the so-called Jacobson generators. The corresponding Fock spaces are constructed. The Bargmann representations are also considered. For the bosonic ArA_r statistics, two inequivalent Bargmann realizations are developed. The first (resp. second) realization induces, in a natural way, coherent states recognized as Gazeau-Klauder (resp. Klauder-Perelomov) ones. In the fermionic case, the Bargamnn realization leads to the Klauder-Perelomov coherent states. For each considered realization, the inner product of two analytic functions is defined in respect to a measure explicitly computed. The Jacobson generators are realized as differential operators. It is shown that the obtained coherent states minimize the Robertson-Schr\"odinger uncertainty relation.Comment: 16 pages, published in JP
    • …
    corecore