6 research outputs found

    Etude experimentale et modelisation du stockage thermique de longue duree en lit de cailloux enterre, ventile

    No full text
    SIGLECNRS T 58674 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Instabilités 3D de convection thermocapillaire en zone-flottante

    No full text
    Nous étudions numériquement la stabilité d'un écoulement 2D en zone-flottante vis-à-vis de perturbations 3D. La zone- flottante est une partie liquide mantenue par capillarité entre deux barreaux cylindriques coaxiaux isothermes et est soumise à un flux thermique latéral dont le profil est fixe. Sa surface libre est ici considérée comme plane et indéformable. Les solutions numériques sont obtenues par méthode de collocation spectrale. Les écoulements stationnaires sont obtenus par méthode de Newton et une méthode d'Arnoldi est utilisée pour l'étude de la stabilité linéaire. La recherche a été menée sur une large gamme de nombres de Prandtl (Pr), allant de 0.001 à 100. Le mode stabilisant est le mode 2 aux faibles Pr et le mode 1 pour les grands Pr. Le mécanisme de déstabilisation est analysé en observant le taux de croissance de l'énergie de la perturbation, mettant en évidence le caractère hydrodynamique de la perturbation aux faibles Pr et hydrothermal aux grands Pr. L'utilisation d'un nouvel outil d'analyse, le système adjoint, permet d'identifier les zones sensibles de l'écoulement à des perturbations impulsionnelles. Cet outil a été utilisé pour étudier les perturbations bidimensionnelles. La localisation des zones sensibles permet d'identifier des structures dans l'écoulement qui, à bas Pr, répondent au critère de Fjørtøft. Cependant ce critère ne s'applique, comme tous les critères de stabilité, qu'à des écoulements non visqueux. A hauts Pr, le lieu sensible à une perturbation thermique se situe dans les zones de fort gradient thermique sur la surface libre, proche des fronts solides. La structure d'écoulements 3D faiblements non linéaires a aussi été décrite.We study numerically the stability of the 2D flow in floating-zone with respect to 3D perturbations. The floating-zone is a liquid bridge maintained thanks to capillarity between two coaxial isothermal rods and is laterally heated. The free surface is straight and non-deformable. The numerical solutions are calculated with spectral collocation method. Stationary flows are obtained with Newton method and their stability is determined through an Arnoldi method. The study has been performed over a large range of Prandtl (Pr) number values, from 0.001 to 100. The mode 2 is the most dangerous at low Pr whereas the mode 1 is the most dangerous at high Pr. We analyze the destabilisation mechanism through the perturbation energy growth rate. It appears that the perturbation is hydrodynamical at low Pr and hydrothermal at high Pr. A new tool, the adjoint system, allows us to localize the most sensitive regions of the flow with respect to impulse perturbations. It was used to study the 2D stationary flows. The low Pr stationary flow structure in the most sensitive regions satisfies the Fjørtøft stability criteria. Nevertheless, this criteria is, like the other stability criteria, only for inviscid fluids. For high Pr, the most sensitive region to temperature disturbance is located on the free surface, near the walls where thermal gradients is strong. The 3D structure of weakly non linear flows has also been described.ORSAY-PARIS 11-BU Sciences (914712101) / SudocNANCY/VANDOEUVRE-INPL (545472102) / SudocSudocFranceF

    Shear-flow instabilities in closed flow

    No full text
    Cette étude se concentre sur la compréhension de la physique des instabilités dans différents écoulements de cisaillement, particulièrement la cavité entraînée et la cavité thermocapillaire, où l'écoulement d'un fluide incompressible est assuré soit par le mouvement d une ou plusieurs parois, soit par des contraintes d origine thermique.Un code spectral a été validé sur le cas très étudié de la cavité entrainée par une paroi mobile. Il est démontré dans ce cas que l'écoulement transit d'un régime stationnaire à un instationnaire au-delà d'une valeur critique du nombre de Reynolds. Ce travail est le premier à donner une interprétation physique de l'évolution non monotonique du nombre de Reynolds critique en fonction du facteur d'aspect. Lorsque le fluide est entraîné par deux parois mobiles, la cavité entraînée possède un plan de symétrie particulièrement sensible. Des solutions asymétriques peuvent être observés en plus de la solution symétrique au-dessus d'une certaine valeur du nombre de Reynolds. La transition oscillatoire entre la solution symétrique et les solutions asymétriques est expliquée physiquement par les forces en compétition. Dans le cas asymétrique, l'évolution de la topologie permet à l'écoulement de rester stationnaire avec l'augmentation du nombre de Reynolds. Lorsque l'équilibre est perdu une instabilité se manifeste par l'apparition d'un régime oscillatoire dans l'écoulement asymétrique.Dans une cavité thermocapillaire rectangulaire avec une surface libre, Smith et Davis prévoient deux types d'instabilités convectives thermiques: des rouleaux longitudinaux stationnaires et des ondes hydrothermales instationnaires. L'apparition de ses instabilités a été mis en évidence à plusieurs reprises expérimentalement et numériquement. Alors que les applications impliquent souvent plus d'une surface libre, il semble qu'il y ait peu de connaissances sur l'écoulement thermocapillaire entraînée avec deux surfaces libres. Un film liquide libre soumis à des contraintes thermocapillaires possède un plan de symétrie particulier comme dans le cas de la cavité entrainée par deux parois mobiles. Une étude de stabilité linéaire avec deux profils de vitesse pour le film liquide libre est présentée avec différents nombres de Prandtl. Au-delà d'un nombre de Marangoni critique, il est découvert que ces états de base sont sensibles à quatre types d'instabilités convectives thermiques qui peuvent conserver ou briser la symétrie du système. Les mécanismes qui permettent de prédire ces instabilités sont également découverts et interpréter en fonction de la valeur du nombre de Prandtl du fluide. La comparaison avec les travaux de Smith et Davis est faite. Une simulation numérique directe permet de valider les résultats obtenus avec l'étude de stabilité de linéaire.This study focuses on the understanding of the physics of different instabilities in driven cavities, specifically the lid-driven cavity and the thermocapillarity driven cavity where flow in an incompressible fluid is driven either due to one or many moving walls or due to surface stresses that appear from surface tension gradients caused by thermal gradients. A spectral code is benchmarked on the well-studied case of the lid-cavity driven by one moving wall. In this case, It is shown that the flow transit form a steady regime to unsteady regime beyond a critical value of the Reynolds number. This work is the first to give a physical interpretation of the non-monotonic evolution of the critical Reynolds number versus the size of the cavity. When the fluid is driven by two facing walls moving in the same direction, the cavity possesses a plane of symmetry particularly sensitive. Thus, asymmetrical solutions can be observed in addition to the symmetrical solution above a certain value of the Reynolds number. The oscillatory transition between the symmetric solution and asymmetric solutions is explained physically by the forces in competition. In the asymmetric case, the change of the topology allows the flow to remain steady with increasing the Reynolds number. When the equilibrium is lost, an instability manifests by the appearance of an oscillatory regime in the asymmetric flow. In a rectangular cavity thermocapillary with a free surface, Smith and Davis found two types of thermal convective instabilities: steady longitudinal rolls and unsteady hydrothermal waves. The appearance of its instability has been highlighted repeatedly experimentally and numerically. While applications often involve more than a free surface, it seems that there is little knowledge about the thermocapillary driven flow with two free surfaces. A free liquid film possesses a particular plane of symmetry as in the case of the two-sided lid-driven cavity. A linear stability analysis for the free liquid film with two velocity profiles is presented with various Prandtl numbers. Beyond a critical Marangoni number, it is observed that these basic states are sensitive to four types of thermal convective instabilities, which can keep or break the symmetry of the system. Mechanisms that predict these instabilities are discovered and interpreted according to the value of the Prandtl number of the fluid. Comparison with the work of Smith and Davis is made. A direct numerical simulation is done to validate the results obtained with the linear stability analysis.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Dynamique d'une interface en présence d'une singularité de contact solide/fluide

    No full text
    La solution d'un grande nombre de problèmes académiques, embrassant une grande variété de configurations : la cavité entrainée, la ligne de contact mobile, les écoulements thermocapillaires confinés, possède une singularité (discontinuité d'un champ ou d'une de ses dérivées). Il est bien connu que les méthodes spectrales sont très sensibles aux singularités, ce qui se traduit par la présence d'oscillations non-physiques (phénomène de Gibbs) au voisinage de la discontinuité. Pour cette raison, il est nécessaire de remplacer les conditions aux limites singulières par des conditions régulières filtrant explicitement la singularité pour employer ce type d'approximation numérique. Il est moins connu que les méthodes de précision finie (différences finies, volumes finis, éléments finis...), qui permettent l'emploi direct des conditions singulières, introduisent un filtrage passif de la singularité lié à la finesse de résolution spatiale imposée. Des travaux précédents (thèse d'Eric Chénier) ont montré que l'échelle de filtrage pouvait influencer la structure de l'écoulement à l'échelle globale.En partant du principe que la physique est régulière, il devrait exister un mécanisme modifiant le comportement du fluide dans la région où le modèle classique est mis en défaut. On est alors amené à formuler deux questions fondamentales. D'une part, quel est l'ordre de grandeur de la petite échelle à laquelle la physique change ? D'autre part, existe-t'il un modèle macroscopique à même de rendre compte de ces effets locaux dans une simulation numérique du milieu continu ?Cette thèse est une tentative de répondre à ces deux questions.The research objective of this work is to achieve a physically relevant modeling removing velocity or vorticitysingularities which occur at solid/fluid junctions. These singularities are very common in a number of fluid flows(e.g. lid-driven cavity corners, laterally heated liquid bridges, moving contact lines). It is well known that spectralmethods are very sensitive to singularities, and exhibit non physical oscillations (Gibbs Phenomenon) in the vicinityof a discontinuity. For this reason, when using such methods, singular boundary conditions have to be replaced by someregular condition obtained by explicitly filtering the discontinuity. It is less known that finite precision methods(e.g. finite differences, finite volumes, finite elements), though allowing to keep the original conditions, introducesome implicit filter depending on the scale of discretization. In previous work, evidence was brought up that the localscale of filtering can play a determinant role on the global flow structure. It can, for instance, be responsible forsymmetry breaking of the solution in full zone liquid bridges simulations.Assuming that physics is regular, there must exist some mechanism that modifies the fluid's behavior in the region where the classical model fails.Two fundamental questions show up. First, what is the length of the small scale at which physics differs. Second, does there exist somemacroscopic model which can incorporate these local effects in numerical simulations of continuum.This thesis is devoted to address these two questions.ORSAY-PARIS 11-BU Sciences (914712101) / SudocNANCY/VANDOEUVRE-INPL (545472102) / SudocSudocFranceF

    Instabilités d'évaporation mélangés binaires

    No full text
    Cette étude concerne la physique des écoulements convectifs résultant d une instabilité d évaporation de fluides binaires. Ce problème a de nombreuses applications, l enrobage par centrifugation, le dépôt de films, les caloducs, etc, pour lesquels le changement de phase et la convection jouent un rôle prépondérant dans la conception et la qualité des procédés. Le système physique étudié est un mélange liquide sous sa propre vapeur, confiné par deux plaques conductrices de chaleur et des bords latéraux isolants. Les plaques sont utilisées pour appliquer un gradient thermique. Aucun gradient de concentration n est imposé au système. Ces gradients sont induits par les différentes vitesses d évaporation des composés. Dans ce système, il est important de comprendre comment la dynamique des fluides et les transferts de masse et de chaleur entrent en compétition pour la formation de structures. Le principal objectif de ce travail est d identifier les conditions pour que le système évolue d un état conductif vers un état de convection lorsque le gradient vertical de température dépasse une certaine valeur critique.Dans le système, la convection s installe par trois mécanismes distincts : évaporation, gradients de densité et gradients de tension interfaciale. Trois forces convectives s opposent aux effets de diffusion qui tendent à garder le système en état conductif. Le seuil d apparition de la convection dépend de quelques variables, comme les dimensions du contenant, les propriétés thermophysiques des phases liquide et vapeur, la fraction massique, et les caractéristiques de perturbations. L effet de chacune de ces variables sur le seuil est étudié en présence ou non de gravité.Pour représenter la physique, un modèle mathématique non linéaire complet est développé, basé sur les conservations de quantité de mouvement, d énergie et de masse dans chaque phase avec les conditions aux limites appropriées. Le fluide binaire est composé de deux alcools légers comme l éthanol et le sec-butanol. Dans les équations du modèle, la masse volumique ainsi que la tension interfaciale sont fonctions à le fois de la température et de la concentration. Pour la recherche du seuil de transition, les équations sont linéarisées autour d un état de base connu. Dans notre cas, il s agit de l état conductif. Le système d équations linéaires résultant est résolu par une méthode de collocation spectrale Chebyshev.Nous obtenons quatre résultats principaux. Premièrement, dans un système multi-composants sans gravitation, une instabilité n apparaît que lorsque le système est chauffé du côté de la phase vapeur contrairement à un système mono-composant. Cela implique que, si on souhaite éviter les instabilités, il vaut mieux un apport de chaleur par la phase liquide en cas de processus d évaporation en couches minces ou en micro-gravité.Deuxièmement, en présence de gravité, un système multi-composants peut devenir instable quelle que soit la direction du chauffage. Si la convection thermique est négligeable, alors nous montrons que le chauffage par la phase vapeur est la configuration la plus instable. Sinon, les deux modes de chauffage sont à même de produire une instabilité. Ce résultat implique que le gradient thermique appliqué doit être inférieur à une valeur seuil pour éviter les instabilités quelle que soit la direction du chauffage.Troisièmement, lorsque l instabilité apparaît en absence de gravité, des structures n apparaitront pas dans le cas de fluide pur mais apparaitront dans le cas d un fluide multi-composants. De même, des structures apparaitront en présence de gravité en fonction du facteur d aspect du confinement. Les facteurs d aspect peuvent être choisis pour éviter des structures multi-cellulaires même en cas d apparition d instabilités durant l évaporation.Enfin, des structures oscillantes ne sont pas prédites de façon générale malgré les effets opposés des convections solutale et thermique dans le problème d évaporation.This study focuses on understanding the physics of the convective flow resulting from evaporative instability in binary mixtures. This problem has wide applications in spin coating, film deposition, heat pipes, etc. where phase change and convection play a very important role in the design process and also final quality of the product. The physical system of interest consists of a liquid mixture underlying its own vapor sandwiched between two conducting plates with insulated sidewalls in a closed container. The conducting plates are used to apply a vertical temperature gradient while there is no applied concentration gradient in the system. Concentration gradients are induced by the different evaporation rate of the components. In this system it is important to understand how the fluid dynamics and the heat and mass transfer interact competitively to form patterns. The main goal of this work is to identify the conditions for the system going from the conductive no-flow state to a convection state when the applied vertical temperature gradient exceeds a certain value called the critical value.In the system convection arises due to three distinct phenomena; evaporation, density gradients, and interfacial tension gradients. These convective forces are opposed by the diffusion effects that try to keep the system in the conductive no-flow state. The onset point depends upon several variables such as the dimensions of the container, thermo-physical properties of both liquid and vapor phases, mass fraction, and the characteristic of the disturbance given to the system. The effects of each of these variables on the onset point are investigated both in the presence and in the absence of gravity. To represent the physics a complete non-linear mathematical model is developed including momentum, energy, and mass balances in both phases with appropriate boundary conditions. The binary mixture is assumed to be made up of two low weight alcohols such as ethanol and sec-butanol. In the modeling equations the density and the interfacial tension are taken to be function of both temperature and concentration. To identify the onset point the non-linear equations are linearized around a known base state. In this case the base state is the conductive no-flow state. The resulting set of linear equations is solved using a spectral Chebyshev collocation method. Four major results arise from this work. First, in a multi-component system in the absence of gravity, an instability arises only when the system is heated from the vapor side as opposed to evaporation in a single-component. The implication is that evaporative processes in thin layers or in micro-gravity are best conducted with heat from the liquid side if instabilities are to be avoided.Second, in the presence of gravity, a multi-component system may become unstable no matter the direction of heating. If thermal buoyancy is negligible then it is shown in this study that heating from the vapor side is the unstable arrangement. Otherwise either heating style can produce an instability. This result means that the applied temperature difference must be kept below a threshold in order to avoid flow instabilities no matter the heating direction.Third, whenever instability occurs in the absence of gravity, patterns will not result in the case of a pure component but may result in the case of multi-components. Likewise, patterns will result when gravity is taken into account provided the aspect ratio of the container lies in a suitable range. As a result, aspect ratios can be chosen to avoid multi-cellular patterns even if convective flow instabilities arise during evaporation.Lastly, oscillations are not ordinarily predicted despite opposing effects of solutaland thermal convection in the evaporation problem.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    corecore