102 research outputs found

    An Irish perspective on Cryptosporidium. Part 1

    Get PDF
    Cryptosporidiosis, a protozoal disease which causes significant morbidity in humans, is one of the chief causes of diarrhoea in neonatal ruminants. Although the parasite poses a significant threat to public health and animal health in Ireland, its epidemiology on the island is only poorly understood. Environmental studies have shown the waterborne parasite to be widespread in some untreated waterbodies around Ireland. The island's hydrogeological situation, combined with high stocking rates of livestock and the absence of filtration from regular water treatment, render it vulnerable to large-scale outbreaks. This review discusses the parasite in the Irish context and underlines the need for a reference facility to provide active surveillance on the island

    Acromegaly

    Get PDF
    Acromegaly is an acquired disorder related to excessive production of growth hormone (GH) and characterized by progressive somatic disfigurement (mainly involving the face and extremities) and systemic manifestations. The prevalence is estimated at 1:140,000–250,000. It is most often diagnosed in middle-aged adults (average age 40 years, men and women equally affected). Due to insidious onset and slow progression, acromegaly is often diagnosed four to more than ten years after its onset. The main clinical features are broadened extremities (hands and feet), widened thickened and stubby fingers, and thickened soft tissue. The facial aspect is characteristic and includes a widened and thickened nose, prominent cheekbones, forehead bulges, thick lips and marked facial lines. The forehead and overlying skin is thickened, sometimes leading to frontal bossing. There is a tendency towards mandibular overgrowth with prognathism, maxillary widening, tooth separation and jaw malocclusion. The disease also has rheumatologic, cardiovascular, respiratory and metabolic consequences which determine its prognosis. In the majority of cases, acromegaly is related to a pituitary adenoma, either purely GH-secreting (60%) or mixed. In very rare cases, acromegaly is due to ectopic secretion of growth-hormone-releasing hormone (GHRH) responsible for pituitary hyperplasia. The clinical diagnosis is confirmed biochemically by an increased serum GH concentration following an oral glucose tolerance test (OGTT) and by detection of increased levels of insulin-like growth factor-I (IGF-I). Assessment of tumor volume and extension is based on imaging studies. Echocardiography and sleep apnea testing are used to determine the clinical impact of acromegaly. Treatment is aimed at correcting (or preventing) tumor compression by excising the disease-causing lesion, and at reducing GH and IGF-I levels to normal values. Transsphenoidal surgery is often the first-line treatment. When surgery fails to correct GH/IGF-I hypersecretion, medical treatment with somatostatin analogs and/or radiotherapy can be used. The GH antagonist (pegvisomant) is used in patients that are resistant to somatostatin analogs. Adequate hormonal disease control is achieved in most cases, allowing a life expectancy similar to that of the general population. However, even if patients are cured or well-controlled, sequelae (joint pain, deformities and altered quality of life) often remain

    Guidelines for investigating causality of sequence variants in human disease

    Get PDF
    The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development

    Phenotypic Characterization of a Genetically Diverse Panel of Mice for Behavioral Despair and Anxiety

    Get PDF
    Animal models of human behavioral endophenotypes, such as the Tail Suspension Test (TST) and the Open Field assay (OF), have proven to be essential tools in revealing the genetics and mechanisms of psychiatric diseases. As in the human disorders they model, the measurements generated in these behavioral assays are significantly impacted by the genetic background of the animals tested. In order to better understand the strain-dependent phenotypic variability endemic to this type of work, and better inform future studies that rely on the data generated by these models, we phenotyped 33 inbred mouse strains for immobility in the TST, a mouse model of behavioral despair, and for activity in the OF, a model of general anxiety and locomotor activity.We identified significant strain-dependent differences in TST immobility, and in thigmotaxis and distance traveled in the OF. These results were replicable over multiple testing sessions and exhibited high heritability. We exploited the heritability of these behavioral traits by using in silico haplotype-based association mapping to identify candidate genes for regulating TST behavior. Two significant loci (-logp >7.0, gFWER adjusted p value <0.05) of approximately 300 kb each on MMU9 and MMU10 were identified. The MMU10 locus is syntenic to a major human depressive disorder QTL on human chromosome 12 and contains several genes that are expressed in brain regions associated with behavioral despair.We report the results of phenotyping a large panel of inbred mouse strains for depression and anxiety-associated behaviors. These results show significant, heritable strain-specific differences in behavior, and should prove to be a valuable resource for the behavioral and genetics communities. Additionally, we used haplotype mapping to identify several loci that may contain genes that regulate behavioral despair
    corecore