426 research outputs found

    Spontaneous excitation of an accelerated hydrogen atom coupled with electromagnetic vacuum fluctuations

    Get PDF
    We consider a multilevel hydrogen atom in interaction with the quantum electromagnetic field and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy of the atom for uniform acceleration. It is found that the acceleration disturbs the vacuum fluctuations in such a way that the delicate balance between the contributions of vacuum fluctuation and radiation reaction that exists for inertial atoms is broken, so that the transitions to higher-lying states from ground state are possible even in vacuum. In contrast to the case of an atom interacting with a scalar field, the contributions of both electromagnetic vacuum fluctuations and radiation reaction to the spontaneous emission rate are affected by the acceleration, and furthermore the contribution of the vacuum fluctuations contains a non-thermal acceleration-dependent correction, which is possibly observable.Comment: 8 pages, Revtex4, accepted for publication in PR

    Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum

    Get PDF
    We study, in the multipolar coupling scheme, a uniformly accelerated multilevel hydrogen atom in interaction with the quantum electromagnetic field near a conducting boundary and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy. It is found that the perfect balance between the contributions of vacuum fluctuations and radiation reaction that ensures the stability of ground-state atoms is disturbed, making spontaneous transition of ground-state atoms to excited states possible in vacuum with a conducting boundary. The boundary-induced contribution is effectively a nonthermal correction, which enhances or weakens the nonthermal effect already present in the unbounded case, thus possibly making the effect easier to observe. An interesting feature worth being noted is that the nonthermal corrections may vanish for atoms on some particular trajectories.Comment: 19 pages, no figures, Revtex

    Loading of a cold atomic beam into a magnetic guide

    Full text link
    We demonstrate experimentally the continuous and pulsed loading of a slow and cold atomic beam into a magnetic guide. The slow beam is produced using a vapor loaded laser trap, which ensures two-dimensional magneto-optical trapping, as well as cooling by a moving molasses along the third direction. It provides a continuous flux larger than 10910^9 atoms/s with an adjustable mean velocity ranging from 0.3 to 3 m/s, and with longitudinal and transverse temperatures smaller than 100μ100 \muK. Up to 31083 10^8 atoms/s are injected into the magnetic guide and subsequently guided over a distance of 40 cm.Comment: 10 pages, 10 figures, accepted for publication to EPJ

    Three-body decay of a rubidium Bose-Einstein condensate

    Full text link
    We have measured the three-body decay of a Bose-Einstein condensate of rubidium (87^{87}Rb) atoms prepared in the doubly polarized ground state F=mF=2F=m_F=2. Our data are taken for a peak atomic density in the condensate varying between 2×10142\times 10^{14} cm−3^{-3} at initial time and 7×10137\times 10^{13} cm−3^{-3}, 16 seconds later. Taking into account the influence of the uncondensed atoms onto the decay of the condensate, we deduce a rate constant for condensed atoms L=1.8(±0.5)×10−29L=1.8 (\pm 0.5) \times 10^{-29} cm6^{6} s−1^{-1}. For these densities we did not find a significant contribution of two-body processes such as spin dipole relaxation.Comment: 14 pages, 4 figure

    Practical scheme for a light-induced gauge field in an atomic Bose gas

    Full text link
    We propose a scheme to generate an Abelian gauge field in an atomic gas using two crossed laser beams. If the internal atomic state follows adiabatically the eigenstates of the atom-laser interaction, Berry's phase gives rise to a vector potential that can nucleate vortices in a Bose gas. The present scheme operates even for a large detuning with respect to the atomic resonance, making it applicable to alkali-metal atoms without significant heating due to spontaneous emission. We test the validity of the adiabatic approximation by integrating the set of coupled Gross-Pitaevskii equations associated with the various internal atomic states, and we show that the steady state of the interacting gas indeed exhibits a vortex lattice, as expected from the adiabatic gauge field.Comment: 4 pages, 3 figure

    Evaporative Cooling of a Guided Rubidium Atomic Beam

    Full text link
    We report on our recent progress in the manipulation and cooling of a magnetically guided, high flux beam of 87Rb^{87}{\rm Rb} atoms. Typically 7×1097\times 10^9 atoms per second propagate in a magnetic guide providing a transverse gradient of 800 G/cm, with a temperature ∼550\sim550 μ\muK, at an initial velocity of 90 cm/s. The atoms are subsequently slowed down to ∼60\sim 60 cm/s using an upward slope. The relatively high collision rate (5 s−1^{-1}) allows us to start forced evaporative cooling of the beam, leading to a reduction of the beam temperature by a factor of ~4, and a ten-fold increase of the on-axis phase-space density.Comment: 10 pages, 8 figure

    Homogenization of linear transport equations in a stationary ergodic setting

    Full text link
    We study the homogenization of a linear kinetic equation which models the evolution of the density of charged particles submitted to a highly oscillating electric field. The electric field and the initial density are assumed to be random and stationary. We identify the asymptotic microscopic and macroscopic profiles of the density, and we derive formulas for these profiles when the space dimension is equal to one.Comment: 24 page

    Dynamics of a single vortex line in a Bose-Einstein condensate

    Full text link
    We study experimentally the line of a single quantized vortex in a rotating prolate Bose-Einstein condensate confined by a harmonic potential. In agreement with predictions, we find that the vortex line is in most cases curved at the ends. We monitor the vortex line leaving the condensate. Its length is measured as a function of time and temperature. For a low temperature, the survival time can be as large as 10 seconds. The length of the line and its deviation from the center of the trap are related to the angular momentum per particle along the condensate axis.Comment: 4 pages, 4 figures, submitted to PR
    • …
    corecore