We study, in the multipolar coupling scheme, a uniformly accelerated
multilevel hydrogen atom in interaction with the quantum electromagnetic field
near a conducting boundary and separately calculate the contributions of the
vacuum fluctuation and radiation reaction to the rate of change of the mean
atomic energy. It is found that the perfect balance between the contributions
of vacuum fluctuations and radiation reaction that ensures the stability of
ground-state atoms is disturbed, making spontaneous transition of ground-state
atoms to excited states possible in vacuum with a conducting boundary. The
boundary-induced contribution is effectively a nonthermal correction, which
enhances or weakens the nonthermal effect already present in the unbounded
case, thus possibly making the effect easier to observe. An interesting feature
worth being noted is that the nonthermal corrections may vanish for atoms on
some particular trajectories.Comment: 19 pages, no figures, Revtex