21,924 research outputs found

    Mining Measured Information from Text

    Full text link
    We present an approach to extract measured information from text (e.g., a 1370 degrees C melting point, a BMI greater than 29.9 kg/m^2 ). Such extractions are critically important across a wide range of domains - especially those involving search and exploration of scientific and technical documents. We first propose a rule-based entity extractor to mine measured quantities (i.e., a numeric value paired with a measurement unit), which supports a vast and comprehensive set of both common and obscure measurement units. Our method is highly robust and can correctly recover valid measured quantities even when significant errors are introduced through the process of converting document formats like PDF to plain text. Next, we describe an approach to extracting the properties being measured (e.g., the property "pixel pitch" in the phrase "a pixel pitch as high as 352 {\mu}m"). Finally, we present MQSearch: the realization of a search engine with full support for measured information.Comment: 4 pages; 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '15

    Exploring the Roper wave function in Lattice QCD

    Full text link
    Using a correlation matrix analysis consisting of a variety of smearings, the CSSM Lattice collaboration has successfully isolated states associated with the Roper resonance and other "exotic" excited states such as the Λ(1405)\Lambda(1405) on the lattice at near-physical pion masses. We explore the nature of the Roper by examining the eigenvectors that arise from the variational analysis, demonstrating that the Roper state is dominated by the χ1\chi_1 nucleon interpolator and only poorly couples to χ2.\chi_2. By examining the probability distribution of the Roper on the lattice, we find a structure consistent with a constituent quark model. In particular, the Roper dd-quark wave function contains a single node consistent with a 2S2S state. A detailed comparison with constituent quark model wave functions is carried out, validating the approach of accessing these states by constructing a variational basis composed of different levels of fermion source and sink smearing.Comment: 7 pages, 5 figures; presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Jets in GRBs: Tests and Predictions for the Structured Jet Model

    Full text link
    The two leading interpretations of achromatic breaks that are observed in the light curves of GRBs afterglow are (i) the manifestation of the edge of a jet, which has a roughly uniform energy profile and a sharp edge and (ii) a line of sight effect in jets with a variable energy profile. The first scenario requires the inner engine to produce a jet with a different opening angle each explosion, while the latter requires a standard engine. The physical structure of the jet is a crucial factor in understanding GRB progenitors, and therefore discriminating the two jet scenarios is particularly relevant. In the structured jet case, specific predictions can be made for the distribution of observed break angles θbreak\theta_{\rm break}, while that distribution is arbitrary in the first scenario. We derive the theoretical distribution for the structured jet model. Specifically, we predict the most common angle to be about 0.12 rad, in rough agreement with the sample. If this agreement would hold as the sample size increases, it would strengthen the case for the standard jet hypothesis. We show that a prediction of this model is that the average viewing angle is an increasing function of the survey sensitivity, and in particular that a mission like {\em Swift} will find the typical viewing angle to be about 0.3 rad. The local event rate predicted by this model is RGRB(z=0)∼0.5R_{\rm GRB}(z=0)\sim 0.5 Gpc−3^{-3} yr−1^{-1}.Comment: 14 pages, 3 figures; accepted to Ap

    Deactivation of biacetyl triplets by cyanocobaltate(III) complexes

    Get PDF
    The rate of electronic energy transfer from biacetyl triplets to Co(CN)_(5)(X)^(n–)(X = CN^–, MeCN, pyridine, N_(3)^–, H_(2)O, or SCN^–) is strongly dependent on the energy of the first spin-allowed d–d transition of Co(CN)_(5)(X)^(n–), and (for X = CN^–, N_(3)^–, and SCN^–) the direct and sensitized photosubstitution yields are the same, implying a common reactive state

    Slave finite element for non-linear analysis of engine structures. Volume 2: Programmer's manual and user's manual

    Get PDF
    The programming aspects of SFENES are described in the User's Manual. The information presented is provided for the installation programmer. It is sufficient to fully describe the general program logic and required peripheral storage. All element generated data is stored externally to reduce required memory allocation. A separate section is devoted to the description of these files thereby permitting the optimization of Input/Output (I/O) time through efficient buffer descriptions. Individual subroutine descriptions are presented along with the complete Fortran source listings. A short description of the major control, computation, and I/O phases is included to aid in obtaining an overall familiarity with the program's components. Finally, a discussion of the suggested overlay structure which allows the program to execute with a reasonable amount of memory allocation is presented
    • …
    corecore