6,064 research outputs found

    Spin-Orbit Coupling Fluctuations as a Mechanism of Spin Decoherence

    Full text link
    We discuss a general framework to address spin decoherence resulting from fluctuations in a spin Hamiltonian. We performed a systematic study on spin decoherence in the compound K6_6[V15_{15}As6_6O42_{42}(D2_2O)] \cdot 8D2_2O, using high-field Electron Spin Resonance (ESR). By analyzing the anisotropy of resonance linewidths as a function of orientation, temperature and field, we find that the spin-orbit term is a major decoherence source. The demonstrated mechanism can alter the lifetime of any spin qubit and we discuss how to mitigate it by sample design and field orientation.Comment: submitte

    Study of the local field distribution on a single-molecule magnet-by a single paramagnetic crystal; a DPPH crystal on the surface of an Mn12-acetate crystal

    Get PDF
    The local magnetic field distribution on the subsurface of a single-molecule magnet crystal, SMM, above blocking temperature (T >> Tb) detected for a very short time interval (~ 10-10 s), has been investigated. Electron Paramagnetic Resonance (EPR) spectroscopy using a local paramagnetic probe was employed as a simple alternative detection method. An SMM crystal of [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O (Mn12-acetate) and a crystal of 2,2- diphenyl-1-picrylhydrazyl (DPPH) as the paramagnetic probe were chosen for this study. The EPR spectra of DPPH deposited on Mn12-acetate show additional broadening and shifting in the magnetic field in comparison to the spectra of the DPPH in the absence of the SMM crystal. The additional broadening of the DPPH linewidth was considered in terms of the two dominant electron spin interactions (dipolar and exchange) and the local magnetic field distribution on the crystal surface. The temperature dependence of the linewidth of the Gaussian distribution of local fields at the SMM surface was extrapolated for the low temperature interval (70-5 K)

    Coherent manipulation of electron spins up to ambient temperatures in Cr5+^{5+}(S=1/2) doped K3_3NbO8_8

    Full text link
    We report coherent spin manipulation on Cr5+^{5+} (\emph{S} = 1/2, \emph{I} = 0) doped K3_3NbO8_8, which constitutes a dilute two-level model relevant for use as a spin qubit. Rabi oscillations are observed for the first time in a spin system based on transition metal oxides up to room temperature. At liquid helium temperature the phase coherence relaxation time \emph{T2T_2} reaches 10\sim 10 μ\mus and, with a Rabi frequency of 20 MHz, yields a single qubit figure of merit \emph{QMQ_M} of about 500. This shows that a diluted ensemble of Cr5+^{5+} (\emph{S} = 1/2) doped K3_3NbO8_8 is a potential candidate for solid-state quantum information processing.Comment: 4 page

    Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells

    Get PDF
    Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome

    Phonon-bottleneck enhanced magnetic hysteresis in a molecular paddle wheel complex of Ru25+_2^{5+}

    Full text link
    The ruthenium based molecular magnet [Ru2_2(D(3,5-Cl2_2Ph)F)4_4Cl(0.5H2_2O)\cdotpC6_6H14_{14}] (hereafter Ru2_2) behaves as a two-level system at sufficiently low temperatures. The authors performed spin detection by means of single-crystal measurements and obtained magnetic hysteresis loops around zero bias as a function of field sweeping rate. Compared to other molecular systems, Ru2_2 presents an enhanced irreversibility as shown by ``valleys'' of negative differential susceptibility in the hysteresis curves. Simulations based on phonon bottleneck model are in good qualitative agreement and suggest an abrupt spin reversal combined with insufficient thermal coupling between sample and cryostat phonon bath.Comment: 4 pages, 3 figure

    Entrapment of magnetic micro-crystals for on-chip electron spin resonance studies

    Full text link
    On-chip Electron Spin Resonance (ESR) of magnetic molecules requires the ability to precisely position nanosized samples in antinodes of the electro-magnetic field for maximal magnetic interaction. A method is developed to entrap micro-crystals containing spins in a well defined location on a substrate's surface. Traditional cavity ESR measurements are then performed on a mesoscopic crystal at 34 GHz. Polycrystalline diluted Cr5+^{5+} spins were entrapped as well and measured while approaching the lower limit of the ESR sensitivity. This method suggests the feasibility of on-chip ESR measurements at dilution refrigerator temperatures by enabling the positioning of samples atop an on-chip superconducting cavity.Comment: to appear in Journal of Applied Physic
    corecore