6,064 research outputs found
Spin-Orbit Coupling Fluctuations as a Mechanism of Spin Decoherence
We discuss a general framework to address spin decoherence resulting from
fluctuations in a spin Hamiltonian. We performed a systematic study on spin
decoherence in the compound K[VAsO(DO)]
8DO, using high-field Electron Spin Resonance (ESR). By analyzing the
anisotropy of resonance linewidths as a function of orientation, temperature
and field, we find that the spin-orbit term is a major decoherence source. The
demonstrated mechanism can alter the lifetime of any spin qubit and we discuss
how to mitigate it by sample design and field orientation.Comment: submitte
Study of the local field distribution on a single-molecule magnet-by a single paramagnetic crystal; a DPPH crystal on the surface of an Mn12-acetate crystal
The local magnetic field distribution on the subsurface of a single-molecule
magnet crystal, SMM, above blocking temperature (T >> Tb) detected for a very
short time interval (~ 10-10 s), has been investigated. Electron Paramagnetic
Resonance (EPR) spectroscopy using a local paramagnetic probe was employed as a
simple alternative detection method. An SMM crystal of
[Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O (Mn12-acetate) and a crystal of 2,2-
diphenyl-1-picrylhydrazyl (DPPH) as the paramagnetic probe were chosen for this
study. The EPR spectra of DPPH deposited on Mn12-acetate show additional
broadening and shifting in the magnetic field in comparison to the spectra of
the DPPH in the absence of the SMM crystal. The additional broadening of the
DPPH linewidth was considered in terms of the two dominant electron spin
interactions (dipolar and exchange) and the local magnetic field distribution
on the crystal surface. The temperature dependence of the linewidth of the
Gaussian distribution of local fields at the SMM surface was extrapolated for
the low temperature interval (70-5 K)
Coherent manipulation of electron spins up to ambient temperatures in Cr(S=1/2) doped KNbO
We report coherent spin manipulation on Cr (\emph{S} = 1/2, \emph{I} =
0) doped KNbO, which constitutes a dilute two-level model relevant for
use as a spin qubit. Rabi oscillations are observed for the first time in a
spin system based on transition metal oxides up to room temperature. At liquid
helium temperature the phase coherence relaxation time \emph{} reaches
s and, with a Rabi frequency of 20 MHz, yields a single qubit
figure of merit \emph{} of about 500. This shows that a diluted ensemble
of Cr (\emph{S} = 1/2) doped KNbO is a potential candidate for
solid-state quantum information processing.Comment: 4 page
Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells
Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome
Phonon-bottleneck enhanced magnetic hysteresis in a molecular paddle wheel complex of Ru
The ruthenium based molecular magnet
[Ru(D(3,5-ClPh)F)Cl(0.5HO)CH] (hereafter
Ru) behaves as a two-level system at sufficiently low temperatures. The
authors performed spin detection by means of single-crystal measurements and
obtained magnetic hysteresis loops around zero bias as a function of field
sweeping rate. Compared to other molecular systems, Ru presents an enhanced
irreversibility as shown by ``valleys'' of negative differential susceptibility
in the hysteresis curves. Simulations based on phonon bottleneck model are in
good qualitative agreement and suggest an abrupt spin reversal combined with
insufficient thermal coupling between sample and cryostat phonon bath.Comment: 4 pages, 3 figure
Entrapment of magnetic micro-crystals for on-chip electron spin resonance studies
On-chip Electron Spin Resonance (ESR) of magnetic molecules requires the
ability to precisely position nanosized samples in antinodes of the
electro-magnetic field for maximal magnetic interaction. A method is developed
to entrap micro-crystals containing spins in a well defined location on a
substrate's surface. Traditional cavity ESR measurements are then performed on
a mesoscopic crystal at 34 GHz. Polycrystalline diluted Cr spins were
entrapped as well and measured while approaching the lower limit of the ESR
sensitivity. This method suggests the feasibility of on-chip ESR measurements
at dilution refrigerator temperatures by enabling the positioning of samples
atop an on-chip superconducting cavity.Comment: to appear in Journal of Applied Physic
- …
