6 research outputs found

    Beyond natural rubber: Taraxacum kok-saghyz and Taraxacum brevicorniculatum as sources of bioactive compounds

    No full text
    Taraxacum kok-saghyz (TKS) and T. brevicorniculatum (TB) are broadly investigated as natural rubber-producing plants and possible alternative supply sources for this relevant raw material. To fully exploit Taraxacum as a profitable crop, all the potential co-products should be investigated, through in-depth analysis of metabolites present in different organs of the plant. In the present study, natural rubber (NR), inulin, and resin content was measured by accelerated solvent extraction from the roots of TB and TKS, highlighting a 5-fold more content of NR in TKS compared to TB. Moreover, the chemical composition of both acetone and methanolic extracts from the roots and leaves of TKS and TB has been characterized by ultra-high-pressure liquid chromatography/tandem mass spectrometry (UHPLC-HRMS) technique and the content of target compounds between TKS and TB was also compared. The analysis resulted in the detection of 55 metabolites, whose identification was discussed based on chemical classes and the extraction method. Thus, sesquiterpenoids, fatty acids and their derivatives, phenolic compounds, mainly caftaric and chicoric acid, were identified. Hence, both the leaves and roots of TB, and especially of TKS, are rich in a wide variety of high-value-added compounds exploitable along with NR and inulin to increase the commercial value of these two dandelion species

    Correction: Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)

    No full text
    Raw data underlying quantitative RT-qPCR results in Figs 5, 6, and 7 of this article are provided with this notice in S1-S3 Files. The raw data underlying OeAP1, OeAP2, OeFUL, EoSEP2.1, and OeSEP4 results in Fig 5C are not currently available

    The coffee genome provides insight into the convergent evolution of caffeine biosynthesis

    No full text
    Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin
    corecore