45 research outputs found

    The Einstein-Cartan-Elko system

    Get PDF
    The present paper analyses the Einstein-Cartan theory of gravitation with Elko spinors as sources of curvature and torsion. After minimally coupling the Elko spinors to torsion, the spin angular momentum tensor is derived and its structure is discussed. It shows a much richer structure than the Dirac analogue and hence it is demonstrated that spin one half particles do not necessarily yield only an axial vector torsion component. Moreover, it is argued that the presence of Elko spinors partially solves the problem of minimally coupling Maxwell fields to Einstein-Cartan theory.Comment: 12 pages, no figure

    On the analysis of sedimentation velocity in the study of protein complexes

    Get PDF
    Sedimentation velocity analytical ultracentrifugation has experienced a significant transformation, precipitated by the possibility of efficiently fitting Lamm equation solutions to the experimental data. The precision of this approach depends on the ability to account for the imperfections of the experiment, both regarding the sample and the instrument. In the present work, we explore in more detail the relationship between the sedimentation process, its detection, and the model used in the mathematical data analysis. We focus on configurations that produce steep and fast-moving sedimentation boundaries, such as frequently encountered when studying large multi-protein complexes. First, as a computational tool facilitating the analysis of heterogeneous samples, we introduce the strategy of partial boundary modeling. It can simplify the modeling by restricting the direct boundary analysis to species with sedimentation coefficients in a predefined range. Next, we examine factors related to the experimental detection, including the magnitude of optical aberrations generated by out-of-focus solution columns at high protein concentrations, the relationship between the experimentally recorded signature of the meniscus and the meniscus parameter in the data analysis, and the consequences of the limited radial and temporal resolution of the absorbance optical scanning system. Surprisingly, we find that large errors can be caused by the finite scanning speed of the commercial absorbance optics, exceeding the statistical errors in the measured sedimentation coefficients by more than an order of magnitude. We describe how these effects can be computationally accounted for in SEDFIT and SEDPHAT

    Dopaminergic modulation of affective and social deficits induced by prenatal glucocorticoid exposure

    Get PDF
    Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach—acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.This work was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and Janssen Neurosciences Prize. SB and AJR have Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/89936/2012; SFRH/BPD/33611/2009)

    Prosthetic valve endocarditis from Mycobacterium chimaera infection causing granulomatous interstitial nephritis

    No full text
    Mycobacterium chimaera is a rare infection associated with cardiopulmonary bypass. We describe a case of granulomatous interstitial nephritis caused by M. chimaera in a patient with prosthetic aortic valve endocarditis. A 63-year-old female with a mechanical aortic valve replacement developed fatigue, 20 lbs. weight loss, anemia, and an elevated creatinine. Fat pad aspirate at an outside hospital was suspicious for amyloidosis which prompted hematology referral at our institution. Bone marrow biopsy revealed a single granuloma, negative for amyloid or acid fast bacillus (AFB). She was admitted to our hospital for worsening kidney function refractory to intravenous fluid challenge. Transesophageal echocardiogram showed aortic root abscess and valve vegetation with negative blood cultures at seven days. Renal biopsy showed granulomatous interstitial nephritis and negative AFB stain. Prednisone 40 mg was started and renal function partially improved. Blood cultures obtained before biopsy subsequently grew M. chimaera. Three-drug antimicrobial therapy was initiated and prednisone discontinued. One month later, creatinine improved and follow up echocardiogram showed no lesion. Our case highlights this rare infection inducing granulomatous interstitial nephritis despite lack of positive AFB or gram stains on renal biopsy

    A scalable and modular automated pipeline for stitching of large electron microscopy datasets.

    No full text
    Serial-section electron microscopy (ssEM) is the method of choice for studying macroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so -called connectomes. The data that can comprise of up to 108 individual EM images must be assembled into a volume, requiring seamless 2D registration from physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render Trautman and Saalfeld (2019) services used in the volume assembly of the brain of adult Drosophila melanogaster (Zheng et al. 2018). It achieves high throughput by operating only on image meta-data and transformations. ASAP is modular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (Yin et al. 2020); Microns Consortium et al. (2021) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography
    corecore