14 research outputs found

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Multiwavelength behaviour of the blazar 3C 279: decade-long study from gamma-ray to radio

    No full text
    We report the results of decade-long (2008-2018) gamma-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and gamma-ray light curves correlate well, with no delay greater than or similar to 3 h, implying general cospatiality of the emission regions. The gamma-ray optical flux flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain gamma-ray variability on very short time-scales, The Mg II emission line flux in the 'blue' and 'red' wings correlates with the optical synchrotron conlinuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. in the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the tau = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light. curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at similar to 5 GHz, These tendencies suggest. different Doppler boosting of stratified radio-emitting zones in the jet

    Man in highland ecosystem: effects of exposure to high altitude

    No full text
    corecore