662 research outputs found

    Tectonic variation and structural evolution of the West Greenland continental margin

    Get PDF
    Because of its geographic extent of over 2500 km (1553 mi), the West Greenland margin provides a much understudied example of a divergent continental margin, both with respect to hydrocarbon exploration and academic studies. A seismic interpretation study of representative two-dimensional reflection profiles from the Labrador Sea, Davis Strait, and Baffin Bay was undertaken to identify sedimentary and structural components to elucidate the tectonic development of the margin. Nine horizons were interpreted from six representative seismic lines in the area. Margin-scale tectono-stratigraphy was derived from isochron maps, the geometry of mappable faults and their associated stratal architecture. Rifting began in Early to Late Cretaceous at ca. 145–130 Ma, which was followed by two pulses of volcanism in Eocene and Paleocene ages. The transition to the drift stage includes a typical subsidence phase but also erosion, uplift, and deposition of Neogene postrift packages. The shift in the position of depocenters in the Davis Strait and the Labrador Sea during Paleocene and Miocene times is evidence for structural modification of the basin bounding faults. Drift stage deformation suggests a possible anticlockwise rotation in the orientation of the spreading axis in Baffin Bay culminating in an ultraslow sea-floor spreading. Sea-floor spreading on the West Greenland margin started in the south at 70 Ma in the Labrador Sea and propagated northward into the Baffin Bay by 60 Ma. Prospective petroleum systems include thick Cretaceous age strata, with structural traps provided by grabens and inversion structures. Our structural model provides insight into a margin that is highly variable in its structural configuration, further modified by other processes such as magma-assisted rifting that may result in elevated regional heat flow, which has considerable impact on hydrocarbon maturation. Further constraining the implications of heat flow associated with volcanic activities in comparison to that associated with lithospheric stretching will be critical in future exploration

    The missing complexity in seismically imaged normal faults: What are the implications for geometry and production response?

    Get PDF
    The impact of geometric uncertainty on across-fault flow behaviour at the scale of individual intra-reservoir faults is investigated in this study. A high resolution digital elevation model (DEM) of a faulted outcrop is used to construct an outcrop-scale geocellular grid capturing high-resolution fault geometries (5 m scale). Seismic forward modelling of this grid allows generation of a 3D synthetic seismic cube, which reveals the corresponding seismically resolvable fault geometries (12.5 m scale). Construction of a second geocellular model, based upon the seismically resolvable fault geometries, allows comparison with the original outcrop geometries. Running fluid flow simulations across both models enables us to assess quantitatively the impact of outcrop resolution versus seismic resolution fault geometries upon across-fault flow. The results suggest that seismically resolvable fault geometries significantly underestimate the area of across-fault juxtaposition relative to realistic fault geometries. In turn this leads to overestimates in the sealing ability of faults, and inaccurate calculation of fault plane properties such as transmissibility multipliers (TMs)

    Examining fault architecture and strain distribution using geospatial and geomechanical modelling: An example from the Qaidam basin, NE Tibet

    Get PDF
    The investigation of complex geological setting is still dominated by traditional geo-data collection and analytical techniques, e.g., stratigraphic logging, dip data measurements, structural ground mapping, seismic interpretation, balance section restoration, forward modelling, etc. Despite the advantages of improving our understanding in structural geometry and fault architecture, the geospatial modelling, applying computer-aided three-dimensional geometric design, visualization and interpretation, has rarely been applied to such complex geological setting. This study used the Lenghu fold-and-thrust belt (in Qaidam basin, NE Tibetan Plateau) to demonstrate that the application of geospatial and geomechanical modelling could improve our understanding and provide an effective technique for investigating the fault architecture and strain distribution. The three-dimensional configuration of the Lenghu fold-and-thrust belt was initially derived from traditional analysis techniques, such as regional stratigraphic logging, cross section construction, meso-scale ground mapping and landsat image interpretation. The high-resolution field data and landsat image were integrated to construct the geospatial model, which was subsequently used to quantitatively investigate the fault throw changes along the Lenghu thrust fault zone and to understand its control on the lateral structural variation. The geospatial model was then restored in three dimensions to reveal the kinematic evolution of the Lenghu fold-and-thrust belt. Geomechanical modelling, using a Mass-Spring algorithm, provided an effective three-dimensional tool for structural strain analysis, which was used to predict the strain distribution throughout the overall structure, e.g., normal faults with throws ranging from meters to tens of meters in the hanging-wall. The strain distribution predicted by geomechanical modelling was then validated by the natural normal faults in the hanging-wall. The high accordance between the strain prediction and statistics of natural normal faults demonstrates good applicability of geospatial and geomechanical modelling in the complex geological setting of the Lenghu fold-and-thrust belt. The geospatial models and geomechanical models, therefore, can provide a robust technique for analyzing and interpreting multi-source data within a three-dimensional environment. We anticipate that the application of three-dimensional geospatial modelling and geomechanical modelling, integrating both multi-source geologic data and three-dimensional analytical techniques, can provide an effective workflow for investigating the fault architecture and strain distribution at different scales (e.g., ranging from regional-to meso-scale)

    Normal fault growth in continental rifting: insights from changes in displacement and length fault populations due to increasing extension in the Central Kenya Rift

    Get PDF
    This study examines the scaling relationship between fault length and displacement for the purpose of gaining a better understanding of the evolution of normal faults within the central Kenya Rift. 620 normal faults were manually mapped from a digital elevation model (DEM), with 30 m2 resolution and an estimated maximum displacement of ~40–~6030 m and fault lengths of 1270 ‐ 60,600 m. To assess the contribution of fault populations to the strain accommodation from south to north, the study area has been divided into three zones of fault populations based upon their average fault orientations; zone 1 in the north is dominated by NNE striking faults, zone 2 in the centre of the rift is characterised by NNW to NNE fault trends, whereas zone 3 in the south is characterised by NNW striking fault systems. Extensional strain was estimated by summing fault heaves across six transects along the rift, which showed a progressive increase of strain from south to north. The fault length and displacement data in the three zones fit to a power law distribution. The cumulative distributions of fault length populations showed similar fractal dimension (D) in the three zones. The cumulative displacement distributions for the three zones showed a decrease in the Power-law fractal dimension with increasing strain, which implies that the strain is increasingly localized onto larger faults as the fault system becomes more evolved from south to north. Increasing displacement with increasing strain while the fault length remains almost constant may indicate that the fault system could be evolving in accordance with a constant length fault growth model, where faults lengthen quickly and then accrue displacement. Results of this study suggest that the process of progressively increasing fault system maturity and strain localization onto large faults can be observed even over a relatively small area (240 × 150 km) within the rift system. It is also suggested that patterns of fault growth can be deduced from the fractal dimension of cumulative distribution of fault size populations

    The missing piece of the South Atlantic jigsaw: when continental break-up ignores crustal heterogeneity

    Get PDF
    Crustal heterogeneity is considered to play a critical role in the position of continental break-up, yet this can only be demonstrated when a fully constrained pre-break-up configuration of both conjugate margins is achievable. Limitations in our understanding of the pre-break-up crustal structure in the offshore region of many margins preclude this. In the southern South Atlantic, which is an archetypal conjugate margin, this can be achieved because of the high confidence in plate reconstruction. Prior to addressing the role of crustal heterogeneity, two questions have to be addressed: first, what is the location of the regionally extensive Gondwanan Orogeny that remains enigmatic in the Orange Basin, offshore South Africa; and, second, although it has been established that the Argentinian Colorado rift basin has an east–west trend perpendicular to the Orange Basin and Atlantic spreading, where is the western continuation of this east–west trend? We present here a revised structural model for the southern South Atlantic by identifying the South African fold belt offshore. The fold belt trend changes from north–south to east–west offshore and correlates directly with the restored Colorado Basin. The Colorado–Orange rifts form a tripartite system with the Namibian Gariep Belt, which we call the Garies Triple Junction. All three rift branches were active during the break-up of Gondwana, but during the Atlantic rift phase the Colorado Basin failed while the other two branches continued to rift, defining the present day location of the South Atlantic. In addressing these two outstanding questions, this study challenges the premise that crustal heterogeneity controls the position of continental break-up because seafloor spreading demonstrably cross-cuts the pre-existing crustal heterogeneity. Furthermore, we highlight the importance of differentiating between early rift evolution and subsequent rifting that occurs immediately prior to seafloor spreading

    Plus \ue7a change? Switching lithium preparations

    Get PDF
    Copyright \ua9 The Author(s), 2022. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists. Aims and method A supply disruption alert in 2020, now rescinded, notified UK prescribers of the planned discontinuation of Priadel\uae (lithium carbonate) tablets. This service evaluation explored lithium dose and plasma levels before and after the switching of lithium brands, in order to determine the interchangeability of different brands of lithium from a pharmacokinetic perspective. Results Data on the treatment of 37 patients switched from Priadel\uae tablets were analysed. Switching to Camcolit\uae controlled-release tablets at the same dose did not result in meaningful differences in plasma lithium levels. Dose adjustment and known or suspected poor medication adherence were associated with greater variability in plasma lithium levels on switching brands. Clinical implications For comparable pre- and post-switch doses in adherent patients, the most common brands of lithium carbonate appear to produce similar plasma lithium levels. British National Formulary guidance relating to switching lithium brands may be unnecessarily complex

    The role of inherited lithospheric heterogeneities in defining the crustal architecture of rifted margins and the magmatic budget during continental breakup

    Get PDF
    During the final stage of continental rifting, stretching localizes in the future distal domain where lithospheric necking occurs resulting in continental breakup. In magma-poor margins, the lithospheric necking is accompanied by crustal hyperextension, serpentinization and exhumation of mantle lithosphere in the continent-ocean transition domain (COT). In magma-rich margins, the necking is accomplished by the emplacement of large amounts of volcanics in the COT, in the form of seaward dipping wedges of flood basalts (SDRs). This study examines the factors controlling the final crustal architecture observed in rifted margins and the magmatic budget during continental breakup, using observations from the Labrador Sea. The latter shows magma-rich breakup with SDRs documented in the north and magma-poor breakup with a wide domain of exhumed serpentinized mantle recorded in the south. The pre-rift strength of the lithosphere, defined by the inherited thermal structure, composition, and thickness of the lithospheric layers, controls the structural evolution during rifting. While variations in the magmatic budget associated with breakup are controlled primarily by the interaction between the pre-rift inheritance, the timing and the degree of mantle melting, in relation to lithospheric thinning and mantle hydration

    Subsurface structural interpretation by applying trishear algorithm: an example from the Lenghu5 fold-and-thrust belt, Qaidam Basin, Northern Tibetan Plateau

    Get PDF
    The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, ‘dragging structures’, thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults’ intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio

    Understanding regional scale structural uncertainty: The onshore Gulf of Corinth Rift as a hydrocarbon exploration analogue

    Get PDF
    A major challenge when exploring for hydrocarbons in frontier areas is a lack of data coverage. Data may be restricted to regional scale 2D seismic lines, from which assumptions of the 3D geometric configuration are drawn. Understanding the limitations and uncertainties when extrapolating 2D data into 3D space is crucial when assessing the requirements for acquiring additional data such as 3D seismic or exploration wells, and of assigning geologically reasonable uncertainty ranges. The Onshore Gulf of Corinth Rift provides an excellent analogue for rift-scale structural uncertainty in the context of hydrocarbon exploration. Here we use seismic forward modelling to explore this area of uncertainty. Synthetic seismic sections have been generated across the rift based upon fault geometries mapped in the field. Comparison of these sections with the mapped geometries allows quantification of uncertainties encountered when extrapolating 2D data into three dimensions. We demonstrate through examples how potential column heights may be both severely over- and under-estimation due to trap integrity, spill point depth and fault seal ambiguities directly related to fault geometric uncertainty. In addition, fault geometries and linkages also control the location of hanging wall syn-rift reservoirs. Hence, gross reservoir volumes and sediment facies distributions are also significantly influenced by how fault geometries are extrapolated along-strike from 2D to 3D
    • 

    corecore